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Abstract Coloured Petri Nets (CPNs) is a language
for the modelling and validation of systems in which
concurrency, communication, and synchronisation play
a major role. Coloured Petri Nets is a discrete-event
modelling language combining Petri nets with the func-
tional programming language Standard ML. Petri nets
provide the foundation of the graphical notation and
the basic primitives for modelling concurrency, commu-
nication, and synchronisation. Standard ML provides
the primitives for the definition of data types, describing
data manipulation, and for creating compact and pa-
rameterisable models. A CPN model of a system is an
executable model representing the states of the system
and the events (transitions) that can cause the system
to change state. The CPN language makes it possible to
organise a model as a set of modules, and it includes a
time concept for representing the time taken to execute
events in the modelled system. CPN Tools is an indus-
trial-strength computer tool for constructing and anal-
ysing CPN models. Using CPN Tools, it is possible to
investigate the behaviour of the modelled system using
simulation, to verify properties by means of state space
methods and model checking, and to conduct simula-
tion-based performance analysis. User interaction with
CPN Tools is based on direct manipulation of the graph-
ical representation of the CPN model using interaction
techniques, such as tool palettes and marking menus. A
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1 Introduction

Systems engineering is a comprehensive discipline
involving a multitude of activities such as requirements
engineering, design and specification, implementation,
testing, and deployment. The development of distrib-
uted systems is particularly challenging. A major reason
is that these systems possess concurrency and non-
determinism which means that the execution of such sys-
tems may proceed in many different ways. It is extremely
easy for the human designer to miss some important
interaction patterns when designing such a system, lead-
ing to gaps or malfunctions in the system design. To cope
with the complexity of modern concurrent systems, it is
therefore crucial to provide methods that enable debug-
ging and testing of central parts of the system design
prior to implementation and deployment.

One way to approach the challenge of developing
concurrent systems is to build an executable model of
the system. Constructing a model and simulating it usu-
ally leads to significant new insights into the design and
operation of the system considered and often results in
a simpler and more streamlined design. Furthermore,
constructing an executable model usually leads to a
more complete specification facilitating a systematic
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investigation of scenarios which can significantly decr-
ease the number of design errors.

Coloured Petri Nets (CP-nets or CPNs) [16,17,19,23]
is a graphical language for constructing models of con-
current systems and analysing their properties. CP-nets
is a discrete-event modelling language combining Petri
nets [33] and the functional programming language CPN
ML which is based on Standard ML [36,37]. The CPN
modelling language is a general purpose modelling lan-
guage, i.e., it is not focused on modelling a specific class
of systems, but aimed towards a very broad class of sys-
tems that can be characterised as concurrent systems.
Typical application domains of CP-nets are communi-
cation protocols [6], data networks [5], distributed algo-
rithms [34], and embedded systems [1,41]. CP-nets are,
however, also applicable more generally for modelling
systems where concurrency and communication are key
characteristics. Examples of these are business process
and workflow modelling [39], manufacturing systems
[11], and agent systems [31]. Examples of industrial
applications of CP-nets within different domains are
available via [12]. An introduction to the practical use
of CP-nets is also given in [19,24].

A CPN model of a system describes the states of the
system and the events (transitions) that can cause the
system to change state. By making simulations of the
CPN model, it is possible to investigate different sce-
narios and explore the behaviours of the system. Very
often, the goal of simulation is to debug and investi-
gate the system design. CP-nets can be simulated inter-
actively or automatically. An interactive simulation is
similar to single-step debugging. It provides a way to
“walk through” a CPN model, investigating different
scenarios in detail and checking whether the model
works as expected. During an interactive simulation,
the modeller is in charge and determines the next step
by selecting between the enabled events in the current
state. It is possible to observe the effects of the indi-
vidual steps directly on the graphical representation of
the CPN model. Automatic simulation is similar to pro-
gram execution. The purpose is to simulate the model
as fast as possible and it is typically used for testing and
performance analysis. For testing purposes, the model-
ler typically sets up appropriate breakpoints and stop
criteria. For performance analysis the model is instru-
mented with data collectors to collect data concerning
the performance of the system.

Time plays a significant role in a wide range of concur-
rent systems. The correct functioning of some systems
crucially depends on the time taken by certain activi-
ties, and different design decisions may have a signifi-
cant impact on the performance of a system. CP-nets
include a time concept that makes it possible to capture

the time taken to execute activities in the system. The
time concept also means that CP-nets can be applied
for simulation-based performance analysis, investigat-
ing performance measures such as delays, throughput,
and queue lengths in the system, and for modelling and
validation of real-time systems.

CPN models can be structured into a set of modules
to handle large specifications. The modules interact with
each other through a set of well-defined interfaces, in a
similar way as in programming languages. The module
concept of CP-nets is based on a hierarchical structuring
mechanism, allowing a module to have submodules and
allowing a set of modules to be composed to form a new
module.

Visualisation is a technique that uses high-level graph-
ics to animate the behaviour of CPN models, and it is
closely related to simulation of CPN models. An impor-
tant application of visualisation is that it allows for the
presentation of design ideas and analysis results using
application domain concepts. This is particularly impor-
tant in discussions with people and colleagues unfamiliar
with CP-nets. Several means exist for adding domain-
specific graphics on top of a CPN model. This can be
used to abstractly visualise the execution of the CPN
model in the context of the application domain. One
example of this is to use message sequence charts [15]
(or sequence diagrams [29]) to visualise the exchange of
messages in the execution of a communication protocol.

CPN models are formal—in the sense that the CPN
modelling language has a mathematical definition of
its syntax and semantics. This means that they can be
used to verify system properties, i.e., prove that certain
desired properties are fulfilled or that certain undesired
properties are guaranteed to be absent. Verification of
system properties is supported by a set of state space
methods. The basic idea underlying state spaces is to
compute all reachable states and state changes of the
CPN model and represent these as a directed graph
where nodes represent states and arcs represent occur-
ring events. State spaces can be constructed fully auto-
matically. From a constructed state space it is possible to
answer a large set of verification questions concerning
the behaviour of the system such as absence of dead-
locks, the possibility of always being able to reach a
given state, and the guaranteed delivery of a given ser-
vice. The state space methods of CP-nets can also be
applied to timed CP-nets. Hence, it is also possible to
verify the functional correctness of systems modelled
by means of timed CP-nets.

It should be stressed that for the practical use of
CP-nets and their supporting computer tools, it suf-
fices to have an intuitive understanding of the syntax
and semantics of the CPN modelling language. This is
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analogous to ordinary programming languages such as
JAVA that are successfully applied by programmers who
are usually not familiar with the formal definitions of the
languages. This underpins the important property that
CP-nets can be taught and learned without studying the
associated formal definitions.

The practical application of CPN modelling and anal-
ysis relies heavily on the existence of computer tools
supporting the creation and manipulation of models.
CPN Tools [10] is a tool suite for editing, simulation,
state space analysis, and performance analysis of CPN
models. The user of CPN Tools works directly on the
graphical representation of the CPN model. The graph-
ical user interface (GUI) of CPN Tools has no conven-
tional menu bars and pull-down menus, but is based on
interaction techniques such as tool palettes and marking
menus. A license for CPN Tools can be obtained free of
charge via the CPN Tools web pages [10]. CPN Tools is
currently licensed to more than 4,000 users in more than
115 different countries and is available for MS Windows
and Linux.

Reader’s guide

This paper gives a brief introduction to the CPN mod-
elling language and illustrates how construction, simu-
lation, state space analysis, performance analysis, and
visualisation are supported by CPN Tools. Section 2
introduces the concepts of the CPN modelling language.
Section 3 illustrates how construction of CPN models is
supported by CPN Tools, and Sect. 4 shows how simu-
lation is supported. Section 5 gives a brief introduction
to state space methods and explains how they are sup-
ported in CPN Tools. Section 6 introduces the basic ideas
of simulation-based performance analysis and explains
how it is supported by CPN Tools. Section 7 illustrates
how domain-specific visualisation is supported by CPN
Tools. Finally, Section 8 concludes the paper and pro-
vides references to further material on the CPN model-
ling language, practical examples, and use of CPN Tools.

It is not necessary to read the entire paper or to be
familiar with Standard ML to get started using CP-nets
and CPN Tools. To learn the basics it is sufficient to read
the following: the introduction to the concepts of non-
hierarchical CP-nets (Sects. 2.1–2.3), the introduction
to CPN Tools and the tools for constructing non-hier-
archical models (Sects. 3.1, 3.2, 3.4, and 3.5), and the
description of simulating CP-nets (Sect. 4).

The remaining sections of the paper present more
advanced topics. Hierarchical CP-nets are introduced in
Sect. 2.4, and tools for constructing hierarchical models
are presented in Sect. 3.3. Readers interested in perfor-
mance analysis should read the introduction to timed

CP-nets (Sect. 2.5), and Sect. 6 on performance analysis.
State space analysis and visualisation are described in
Sects. 5 and 7, respectively.

A basic introduction to CPN ML and many exam-
ples of how to use CPN ML can be found in the help
pages for CPN Tools (which can also be found online via
[10]). It is not necessary to have a good understanding
of Standard ML to use the basic features of the perfor-
mance, state space, and visualisation facilities. However,
to make effective use of the more advanced features of
these facilities, it is necessary to understand Standard
ML. Again, the help pages provide a number of exam-
ples and descriptions of how Standard ML is used to
support advanced analysis techniques.

2 The CPN modelling language

In this section, we introduce the CPN modelling lan-
guage by means of a small running example modelling
a communication protocol. We use a simple protocol
since it is easy to explain and understand, and because
it involves concurrency, non-determinism, communica-
tion, and synchronisation which are key characteristics
of concurrent systems. The protocol itself is unsophisti-
cated, but yet complex enough to illustrate the constructs
of the CPN modelling language. No prior knowledge of
protocols is required.

The simple protocol consists of a sender transferring
a number of data packets to a receiver. Communication
takes place on an unreliable network, i.e., packets may
be lost and overtaking is possible. The protocol uses
sequence numbers, acknowledgements, and retransmis-
sions to ensure that the data packets are delivered exactly
once and in the correct order at the receiving end. The
protocol uses a stop-and-wait strategy, i.e., the same data
packet is transmitted until a corresponding acknowl-
edgement is received. The data packets consist of a
sequence number and the data (payload) to be transmit-
ted. An acknowledgement consists of a sequence num-
ber specifying the number of the data packet expected
next by the receiver.

2.1 Net structure, declarations, and inscriptions

A CPN model is usually created as a graphical drawing,
and Fig. 1 shows the basic CPN model of the protocol.
The left part models the sender, the middle part models
the network, and the right part models the receiver. The
CPN model contains eight places (drawn as ellipses or
circles), five transitions (drawn as rectangular boxes), a
number of directed arcs connecting places and transi-
tions, and finally some textual inscriptions next to the
places, transitions, and arcs. The inscriptions are written
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Fig. 1 Basic CPN model of the simple protocol in the initial marking M0

in the CPN ML programming language which is an
extension of the Standard ML language. Places and tran-
sitions are called nodes. Together with the directed arcs
they constitute the net structure. An arc always connects
a place to a transition or a transition to a place. It is
illegal to have an arc between two nodes of the same
kind, i.e., between two transitions or two places.

The state of the modelled system is represented by
the places. Each place can be marked with one or more
tokens, and each token has a data value attached to it.
This data value is called the token colour. It is the num-
ber of tokens and the token colours on the individual
places which together represent the state of the system.
This is called a marking of the CPN model, while the
tokens on a specific place constitute the marking of that
place. By convention, we write the names of the places
inside the ellipses. The names have no formal mean-
ing—but they have huge practical importance for the
readability of a CPN model (just like the use of mne-
monic names in traditional programming). The state of
the sender is modelled by the two places PacketsToSend
and NextSend. The state of the receiver is modelled
by the two places DataReceived and NextRec, and the
state of the network is modelled by the places A, B, C,
and D.

Next to each place, there is an inscription which deter-
mines the set of token colours (data values) that the
tokens on the place are allowed to have. The set of pos-
sible token colours is specified by means of a type (as
known from programming languages), and it is called the
colour set of the place. By convention the colour set is
written below the place. The places NextSend, NextRec,
C, and D have the colour set NO. In CPN Tools, colour

sets are defined using the CPN ML keyword colset,
and the colour setNO is defined to be equal to the integer
type int:

colset NO = int;

This means that tokens residing on the four places
NextSend, NextRec, C, and D will have an integer as
their token colour. The colour set NO is used to model
the sequence numbers in the protocol. The place Data
Received has the colour set DATA defined to be the set
of all text stringsstring. The colour setDATA is used to
model the payload of data packets. The remaining three
places have the colour set NOxDATA which is defined to
be the product of the types NO and DATA. This type
contains all two-tuples (pairs) where the first element is
an integer and the second element is a text string. Tuples
are written using parentheses ( and ) around a comma-
separated list. The colour set NOxDATA is used to model
the data packets which contain a sequence number and
some data. The colour sets are defined as:

colset DATA = string;
colset NOxDATA = product NO * DATA;

Next to each place, we find another inscription which
determines the initial marking of the place. The initial
marking inscription of a place is by convention writ-
ten above the place. For example, the inscription at the
upper right side of the place NextSend specifies that
the initial marking of this place consists of one token
with the colour (value) 1. This indicates that we want
data packet number 1 to be the first data packet to
be sent. Analogously, the place NextRec has an initial
marking consisting of a single token with the colour 1.
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This indicates that the receiver is initially expecting
the data packet with sequence number 1. The place
DataReceived has an initial marking which consists of
one token with colour"" (which is the empty text string).
This indicates that the receiver has initially received no
data. The inscription AllPackets at the upper left side
of place PacketsToSend is a constant defined as:

val AllPackets = 1‘(1,"COL") ++ 1‘(2,"OUR") ++

1‘(3,"ED ") ++ 1‘(4,"PET") ++

1‘(5,"RI ") ++ 1‘(6,"NET");

which specifies that the initial marking of this place con-
sists of six tokens with the data values:

(1,"COL"),(2,"OUR"),(3,"ED "),(4,"PET"),
(5,"RI "),(6,"NET").

The ++ and ‘ are operators that allow for the con-
struction of a multi-set consisting of token colours. A
multi-set is similar to a set, except that values can appear
more than once. The infix operator ‘ takes a non-
negative integer as left argument specifying the num-
ber of appearances of the element provided as the right
argument. The ++ takes two multi-sets as arguments
and returns their union (sum). The initial marking of
PacketsToSend consists of six tokens representing the
data packets which we want to transmit. The absence of
an inscription specifying the initial marking means that
the place initially contains no tokens. This is the case for
the places A, B, C, and D.

The current marking of each place is indicated next
to the place. The number of tokens on the place in the
current marking is shown in the small circle, while the
detailed token colours are indicated in the box posi-
tioned next to the small circle. Initially, the current mark-
ing is equal to the initial marking, denoted M0. As
explained earlier, the initial marking has six tokens on
Packets ToSend and one token on each of the places
NextSend, NextRec, and DataReceived.

The five transitions (drawn as rectangles) represent
the events that can take place in the system. As with
places, we write the names of the transitions inside the
rectangles. The transition names also have no formal
meaning but they are very important for the readabil-
ity of the model. When a transition occurs, it removes
tokens from its input places (those places that have an arc
leading to the transition) and it adds tokens to its output
places (those places that have an arc coming from the
transition). The colours of the tokens that are removed
from input places and added to output places when a
transition occurs are determined by means of the arc
expressions which are the textual inscriptions positioned
next to the individual arcs. A transition and a place may

also be connected by double-headed arcs. A double-
headed arc is shorthand for two directed arcs in oppo-
site directions between a place and a transition which
both have the same arc expression. This implies that
the place is both an input place and an output place
for the transition. The transition SendPacket and the
places PacketsToSend and NextSend are connected by
double-headed arcs.

The arc expressions are written in the CPN ML pro-
gramming language and are built from typed variables,
constants, operators, and functions. When all variables
in an expression are bound to values (of the correct type)
the expression can be evaluated. An arc expression eval-
uates to a multi-set of token colours. As an example,
consider the two arc expressions: n and (n,d) on the
three arcs connected to the transition SendPacket. They
contain the variables n and d declared as:

var n : NO;
var d : DATA;

This means that n must be bound to a value of type NO
(i.e., an integer), while d must be bound to a value of
type DATA (i.e., a text string). We may, e.g., consider the
binding:

〈n=3, d="CPN"〉
which binds n to 3 and d to "CPN". For this binding the
arc expressions evaluate to the following values, where
→ should be read as “evaluates to”:

n → 1‘3
(n,d) → 1‘(3,"CPN")

Arc expressions evaluate to a multi-set of token col-
ours, and this means that there may be zero, exactly one
token, or more than one token removed from an input
place or added to an output place. If an arc expression
evaluates to exactly one token, then the 1‘ can be omit-
ted from the expression by convention. For example,
arc expressions n and (n,d) are shorthand for 1‘n and
1‘(n,d).

2.2 Enabling and occurrence of transitions

Next let us consider the occurrence of events in a CPN
model. The arc expressions on the input arcs of a transi-
tion together with the tokens on the input places deter-
mine whether the transition is enabled, i.e., is able to
occur in a given marking. For a transition to be enabled
it must be possible to find a binding of the variables
that appear in the surrounding arc expressions of the
transition such that the arc expression of each input arc
evaluates to a multi-set of token colours that is present
on the corresponding input place. When the transition
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occurs with a given binding, it removes from each input
place the multi-set of token colours to which the corre-
sponding input arc expression evaluates. Analogously, it
adds to each output place the multi-set of token colours
to which the expression on the corresponding output arc
evaluates.

Let us now consider transition SendPacket. In Fig. 1
transition SendPacket has a thick border line, while the
other four transitions do not. In CPN Tools, this indi-
cates that SendPacket is the only transition that has an
enabled binding in the initial marking M0. The other
transitions are disabled, i.e., they cannot occur. When
this transition occurs, it removes a token from each of
the input places NextSend and PacketsToSend. The arc
expressions of the two double-headed arcs are n and
(n,d).

The initial marking of place NextSend contains a sin-
gle token with colour 1. This means that the variable n
must be bound to 1. Otherwise the expression on the arc
from NextSend would evaluate to a token colour which
is not present at NextSend implying that the transition
is disabled for that binding. Now let us consider the arc
expression (n,d) on the arc from PacketsToSend. We
have already bound n to 1, and now we are looking for
a binding of d such that the arc expression (n,d) will
evaluate to one of the six token colours that are present
on PacketsToSend. Obviously, the only possibility is to
bind d to the string "COL". Hence, we conclude that the
binding:

〈n=1, d="COL"〉
is the only enabled binding for SendPacket (in the ini-
tial marking). An occurrence of SendPacket with this
binding removes the token with colour 1 from the input
place NextSend and removes the token with colour
(1,"COL") from the input place PacketsToSend. Since
SendPacket is connected to PacketsToSend and Next-
Send by means of double-headed arcs, the occurrence
of SendPacket with this binding will also add a token
with colour (1,"COL") to PacketsToSend and add a
token with colour1 to NextSend. This means that tokens
removed from the places PacketsToSend and NextSend
according to the result of evaluating the arc expression,
are immediately replaced by new tokens with the same
token colours. Thus the markings of these places do
not change when the transition occurs. This allows the
packet to be retransmitted (to recover from loss). The
occurrence of SendPacket also adds a new token with
colour (1,"COL") to the output place A. Intuitively,
this represents that the first data packet (1,"COL")
has been sent to the network. Figure 2 shows a fragment
of the CPN model in the new marking M1. We show only
a fragment of the CPN model since the occurrence of a

Fig. 2 Marking M1 reached when SendPacket occurs in M0

transition changes only the markings of the places that
are connected to the transition via an arc.

Consider the marking M1 and the transition Trans-
mitPacket which has three variables n, d, and success.
The variable success is a Boolean variable declared
as:

var success : BOOL;

which appears on the output arc. The colour set BOOL
is defined to be the set of Boolean values ({true,
false}) bool:

colset BOOL = bool;

In marking M1, place A has a single token with colour
(1,"COL"). The variable success is only found on
an output arc from TransmitPacket, and this means that
the variable can be bound to an arbitrary value from its
colour set (which is BOOL). Based on the arc expression
(n,d) on the input arc from A, it is straightforward to
conclude that transition TransmitPacket is enabled with
two different bindings in M1:

b+ = 〈n=1, d="COL", success=true〉
b− = 〈n=1, d="COL", success=false〉

The first of these bindings b+ represents successful trans-
mission over the network. If it occurs in M1 the following
happens:

– The data packet (1,"COL") is removed from input
place A.

– A new token representing the same data packet is
added to the output place B (in the if-then-else
expression the condition success evaluates to
truewhile 1‘(n,d) evaluates to 1‘(1,"COL")).

Figure 3 shows part of the marking M+
2 which is the

result of an occurrence of the binding b+ in M1.
The second binding b− represents an unsuccessful

transmission, i.e., that the data packet is lost by the net-
work. If it occurs in M1 the following happens:
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Fig. 3 Marking M+
2 —successful transmission in M1

– The data packet (1,"COL") is removed from input
place A.

– No token is added to the output place B (in the
if-then-else expression the conditionsuccess
evaluates to false while the predefined constant
empty evaluates to the empty multi-set).

An occurrence of the binding b− in M1 leads back to the
initial marking M0 shown in Fig. 1.

Let us now consider the reception of data packets
in marking M+

2 . The token on place NextRec represents
the sequence number of the data packet that the receiver
expects to receive next. The variable k is bound to the
value of this sequence number. The variable data has
type DATA (i.e., text string):

var data : DATA;

The variable datawill be bound to the text string in the
token colour of the token on place DataReceived. This
text string contains the data from all of the data packets
that have been received by the receiver.

When a data packet is present at place B there are
two different possibilities. Either n=k evaluates to true
which means that the data packet being received is the
one that the receiver expects, orn=k evaluates tofalse
which means that it is not the data packet expected. If
the data packet on place B is the expected data packet
(i.e., n=k), the following happens:

– The data packet is removed from place B.
– The data in the data packet is concatenated to the

end of the data which the receiver has already
received (the operator ˆ is the concatenation opera-
tor for text strings).

– The token colour on place NextRec changes from k
to k+1, which means that the receiver now waits for
the next data packet.

Fig. 4 Marking M3 reached when ReceivePacket occurs

– An acknowledgement is put on place C. The ack-
nowledgement contains the sequence number of the
data packet that the receiver is expecting next.

The occurrence of the transition ReceivePacket in
the marking M+

2 from Fig. 3 corresponds to the reception
of the expected data packet. Figure 4 shows the marking
M3 reached when ReceivePacket occurs in M+

2 .
If the data packet on B is not the expected data packet

(i.e., n�=k), the following happens:

– The data packet is removed from place B.
– The data in the data packet is ignored (the marking

of DataReceived does not change).
– The token colour on place NextRec does not change,

which means that the receiver is waiting for the same
data packet as before.

– An acknowledgement is put on place C. The ack-
nowledgement contains the sequence number of the
data packet that the receiver is expecting next.

Transition TransmitAck has a behaviour which is sim-
ilar to the behaviour of TransmitPacket. It removes
acknowledgements from place C and adds them to place
D in case of a successful transmission. Let M4 be
the marking reached from M3 by the occurrence of
TransmitAck with the binding 〈n=2, success=true〉.

Let us now consider the reception of acknowledge-
ments. When the transition ReceiveAck occurs, it
removes an acknowledgement from place D and updates
the token on NextSend to contain the sequence number
specified in the acknowledgement. The sender is now
able to send the next packet, according to the stop-and-
wait strategy.
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Suppose that the transition ReceiveAck occurs with
the binding 〈n=2, k=1〉 in marking M4. This will lead
to a marking M5 which represents a state where the
sender is ready to send data packet number 2 (since the
first data packet is now known to have been successfully
received). This marking is similar to the initial marking,
but the tokens on places NextSend and NextRec have
colour 2 (instead of 1), and the token on DataReceived
has colour "COL" (instead of "").

Above, we have described the sending, transmission,
and reception of data packet number 1 and the cor-
responding acknowledgement. In the CPN model this
corresponds to the occurrence of five transitions with
enabled bindings. A pair consisting of a transition and
a binding for the variables of the transition is called a
binding element. Below we have listed the five occurring
binding elements:

(SendPacket,〈n=1, d="COL"〉)
(TransmitPacket, 〈n=1, d="COL", success=true〉)
(ReceivePacket, 〈n=1, d="COL", k=1, data=""〉)
(TransmitAck, 〈n=2, success=true〉)
(ReceiveAck, 〈n=2, k=1〉)
Transitions are also allowed to have a guard, which is

a Boolean expression. When a guard is present it must
evaluate to true for the binding to be enabled, other-
wise the binding is disabled and cannot occur. Hence, a
guard puts an additional constraint on the enabling of
bindings for the transition. An example of a guard will
be given in Sect. 6.1.

2.3 Steps, concurrency and conflict

Now let us consider the behaviour of the CPN model
in further detail. We have seen that a single binding
element is enabled in the initial marking:

(SendPacket, 〈n=1, d="COL"〉)
When it occurs, it leads to the marking M1 that is shown
in Fig. 2. In marking M1 three different binding elements
are enabled:

SP = (SendPacket,〈n=1, d="COL"〉)
TP+ = (TransmitPacket,

〈n=1, d="COL", success=true〉)
TP− = (TransmitPacket,

〈n=1, d="COL", success=false〉)
The first binding element represents a retransmission

of data packet number 1. The second binding element
represents a successful transmission of data packet num-
ber 1 over the network, while the third binding element
represents the loss of the data packet by the network.
The last two binding elements, TP+ and TP−, are in

conflict with each other. Both of them are enabled, but
only one of them can occur since each of them needs a
token from place A, and there is only one such token
in M1. However, the binding elements SP and TP+ can
occur concurrently (i.e., in parallel). To occur, SP needs a
token from place PacketsToSend and a token on Next-
Send, while TP+ needs a token from place A. In other
words, both binding elements can get the tokens they
need without competition/interference with the other
binding element. A multi-set of binding elements is con-
currently enabled in a given marking if there are enough
tokens on the input places of the transitions in question
to simultaneously satisfy the demands of all of the bind-
ing elements. By a similar argument, we see that SP and
TP− are concurrently enabled.

A step in general consists of a (non-empty and finite)
multi-set of concurrently enabled binding elements. A
step may consist of a single binding element. We do not
consider the empty multi-set of binding elements to be
a legal step since it would have no effect and always be
enabled. The effect of the occurrence of a set of concur-
rently enabled binding elements is the sum of the effects
caused by the occurrence of the individual binding ele-
ments. This means that the marking reached will be the
same as the one which will be reached if we let the set of
binding elements occur sequentially (i.e., one after each
other in some arbitrary order).

Now let us assume that the first and second of the
three enabled binding elements in marking M1 occur
concurrently with each other, i.e., that we have the fol-
lowing step (written as a multi-set of binding elements):

1‘(SendPacket,〈n=1, d="COL"〉) ++
1‘(TransmitPacket, 〈n=1, d="COL", success=true〉)
We then reach the marking M2 which is partly shown
in Fig. 5. In marking M2 we have four enabled binding
elements:

SP = (SendPacket, 〈n=1, d="COL"〉)
TP+ = (TransmitPacket,

〈n=1, d="COL", success=true〉)
TP− = (TransmitPacket,

〈n=1, d="COL", success=false〉)
RP = (ReceivePacket,

〈n=1, d="COL", k=1, data=""〉)
As before, we have a conflict between TP+ and TP−,
while all the other binding elements are concurrently
enabled since there are enough input tokens to simulta-
neously satisfy the demands of each binding element.

An execution of a CPN model is, in general, described
by means of an occurrence sequence, which specifies
the steps that occur and the intermediate markings that
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Fig. 5 Marking M2 reached when SendPacket and Transmit-
Packet occur in M1

are reached. A marking that is reachable via an occur-
rence sequence starting in the initial marking is called a
reachable marking. The existence of a reachable mark-
ing with more than one enabled binding element makes
the CPN model non-deterministic. This means that there
exist different occurrence sequences containing differ-
ent sequences of steps and leading to different reach-
able markings. It is important to stress that it is only
the choice between the enabled steps which is non-
deterministic. The individual steps themselves are deter-
ministic in the sense that once an enabled step has been
selected in a given marking, the marking resulting from
its occurrence is uniquely determined (unless random
functions are used, as we will illustrate in Sect. 6).

Figure 6 shows an intermediate marking M∗ reached
after the occurrence of a sequence of steps of the CPN
model. In the marking M∗ place A has two tokens
with colour (1,"COL") and one token with colour
(2,"OUR"). In this situation, TransmitPacket is enabled
in bindings corresponding to transmission of data packet
1 and data packet 2. In a CPN model there are no

requirements on the order in which tokens are removed
from places. This means that in M∗ it is possible to let the
binding of TransmitPacket corresponding to a success-
ful transmission of data packet 2 occur, and in this way
let the data packet with sequence number 2 on place A
overtake the two data packets with sequence number 1.
Since there are two tokens with colour (1,"COL") it
also means that TP+ and TP− can occur concurrently
because there is a token on A for each of the two bind-
ing elements. It also means that TP+ can occur concur-
rently with itself , and the same is true for TP−. Thus it
is possible to transmit multiple packets on the network
concurrently.

The transition SendPacket is enabled in M∗ in a bind-
ing corresponding to a retransmission of data packet 2
even if data packet 2 is still in transit. The retransmission
is possible because the transmission of data packet 2 is
too slow and hence could be out-raced by the second
occurrence of SendPacket (i.e., the retransmission of
packet number 2). This means that we have described a
time-related behaviour without the explicit use of time.
What is important at the chosen abstraction level is not
when a retransmission may occur, but the simple fact
that it is possible that such a retransmission can occur.
We will discuss the execution of CPN models in more
detail in Sect. 4 when presenting how simulation is sup-
ported by CPN Tools.

2.4 Modules

We now show how a CPN model can be organised as a
set of hierarchically related modules—in a similar way
as programs are constructed from modules. To illustrate
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Fig. 7 Module for the sender

the use of modules, we revisit the CPN model of the
protocol from Fig. 1 and develop a hierarchical CPN
model for the protocol example. A straightforward idea
is to create a module for the sender, a module for the
network, and a module for the receiver. Furthermore,
if we take a closer look at the network part of the
model in Fig. 1, we notice that it contains two transi-
tions TransmitPacket and TransmitAck that have a very
similar behaviour. Hence, it would be natural to use the
same module to represent the behaviour of Transmit-
Packet and Transmit-Ack. However, the involved token
colours are slightly different. The TransmitPacket tran-
sition deals with data packets, represented by tokens of
type NOxDATA, while the TransmitAck transition deals
with acknowledgements, represented by tokens of type
NO. This means that we cannot immediately use the same
module to represent the behaviour of TransmitPacket
and TransmitAck. To overcome this problem, we use the
union colour set PACKET defined as follows:

colset PACKET = union Data : NOxDATA +
Ack : NO;

The colour set PACKET is a union, and it uses two con-
structors Data and Ack to tell whether a data value
of this colour set represents a data packet (such as
Data(1,"COL")) or an acknowledgement packet
(such as Ack(2)).

Figure 7 shows the Sender module, which contains
two transitions and four places. Place D is an input port,
place A is an output port, while place PacketsToSend
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Fig. 8 Module for the receiver

is an input/output port. This means that places A, D,
PacketsToSend constitute the interface through which
the Sender module exchanges tokens with its environ-
ment (i.e., the other modules). The Sender module will
import tokens via the input port D and it will export
tokens via the output port A. An input/output port is
a port through which the module can both import and
export tokens. In CPN Tools, port places can be recog-
nised by the rectangular port-type tags positioned next
to them specifying whether the port place is an input,
output, or input/output port. The place NextSend is an
internal place, which is only relevant to the Sender mod-
ule itself. The Sender module is identical to the sender
part of Fig. 1 except that the colour set of the places A
and D are now PACKET and that we use the constructors
Data and Ack in the arc expressions on the surrounding
arcs of these places.

Figure 8 shows the Receiver module. It has an input
port B, an output port C, an input/output port DataRe-
ceived, and an internal place NextRec.

Figure 9 shows the Network module. The Network
module has two input ports, A and C, together with
two output ports, B and D. The Network module has
no internal places. The Network module has two sub-
stitution transitions (drawn as rectangular boxes with
double lines), TransmitData and TransmitAck. The basic
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Fig. 9 Module for network
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Fig. 10 Module for packet transmission

idea in hierarchical models is to associate a module with
each substitution transition. When a module is associ-
ated with a substitution transition it is said to be a sub-
module. In CPN Tools, substitution transitions can be
recognised by the double boxes and rectangular sub-
module tags positioned next to them. The tag contains
the name of the submodule related to the substitution
transition. Intuitively, this means that the submodule
presents a more detailed view of the behaviour repre-
sented by the substitution transition—in a similar way
as the implementation of a procedure provides a more
detailed view of the effect of a procedure call. In Fig. 9,
both substitution transitions have the Transmit module
as their associated submodule.

The Transmit module is shown in Fig. 10. The transi-
tion Transmit of the Transmit module transmits packets
of type PACKET, i.e., both data packets and acknowl-
edgements. The variable p is a variable of the colour set
PACKET.

To tie the modules together, we use the Protocol mod-
ule shown in Fig. 11. It represents a more abstract view of
the (entire) protocol system. The substitution transition
Sender has the Sender module from Fig. 7 as its associ-
ated submodule, Network has the Network module from
Fig. 9 as its associated submodule, and Receiver has the
Receiver module from Fig. 8 as its associated submod-
ule. In the Protocol module, we can see that the Sender,
Network, and Receiver modules exchange tokens with
each other, via the places A, B, C, and D—but we can-
not see the details of what the Sender, Network and

Receiver modules do. In Fig. 11 each substitution tran-
sition has the same name as its submodule, but this is
not required.

The input places of substitution transitions are called
input sockets, while the output places are called output
sockets. This means that in the Protocol module A is an
output socket for the substitution transition Sender, and
an input socket for the substitution transition Network.
Place PacketsToSend is an input/output socket for the
substitution transition Sender.

The socket places of a substitution transition con-
stitute the interface of the substitution transition. To
obtain a complete hierarchical model, we need to tell
how the interface of each submodule is related to the
interface of its substitution transition. This is done by
means of a port assignment, which maps the port places
of the submodule to the socket places of the substitu-
tion transition. Input ports are assigned to input sockets,
output ports to output sockets, and input/output ports
to input/output sockets. For the substitution transitions
and associated submodules in Fig. 11, each port has the
same name as the socket to which it is assigned, but this
is not required.

When a port is assigned to a socket, the two places
constitute two different views of a single place. This
means that the port and socket place always share the
same marking and hence conceptually become the same
compound place. Figures 12 and 13 show the marking of
the Sender and Network modules after an occurrence
of the SendPacket transition in the initial marking.

When transition SendPacket occurs, it adds a token
to the output port A in the Sender module (see Fig. 12).
This port place is assigned to the output socket A of the
substitution transition Sender in the Protocol module
(see Fig. 11). Hence, the new token will also appear at
place A in the Protocol module. This place is also an
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Fig. 11 Protocol module—top-level module of the hierarchical protocol model
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Fig. 12 Marking of Sender module—after occurrence of
SendPacket

Fig. 13 Marking of Network module—after occurrence of
SendPacket

input socket for the substitution transition Network and
has the port place A in the Network module (see Fig. 13)
assigned to it. Hence, we conclude that the new token
also becomes available at the port place A of the Network
module. In other words the three places A (in the Proto-
col, Sender, and Network modules) are three different
views of a single compound place—through which the
modules can interchange tokens with each other. Similar
remarks can be made about the places B, C, and D. The
place D appears in the Protocol, Sender, and Network
modules, while B and C appear in the Protocol, Network,
and Receiver modules.

Above we have seen that two related port and socket
places constitute different views of a single compound
place, and that this means that they always have the same
marking. Obviously, this implies that they also need to
have identical colour sets and identical initial markings.
It should be noted that substitution transitions do not
have guards, and arcs connected to substitution transi-
tions do not have arc expressions. It does not make sense
to talk about the enabling and occurrence of a substitu-
tion transition. Instead the substitution transition repre-
sents the compound behaviour of its submodule.

In the hierarchical model presented above there are
three levels of abstraction. The highest abstraction level
is the Protocol module, while the lowest abstraction level
is the Sender, Transmit, and Receiver modules, and the
Network module is in between. In general, there can be
an arbitrary number of abstraction levels. CPN models
of larger systems typically have up to ten abstraction
levels.

The Transmit module is used as submodule of the
TransmitData and TransmitAck substitution transitions
in the Network module. This means that there will be
two separate instances of the Transmit module—one
instance for each of the two substitution transitions.
For the instance of the Transmit module which is a sub-
module of the substitution transition TransmitData, we
assign the port place IN to the socket place A, while we
assign the port place OUT to the socket place B. For the
instance of the Transmit module which is a submodule
of the substitution transition TransmitAck, we assign the
port place IN to the socket place C, while we assign the
port place OUT to the socket place D.

Each instance of a module has its own marking. This
means that the marking of the instance of the Trans-
mit module corresponding to the TransmitData substi-
tution transition is independent of the marking of the
instance of the Transmit module corresponding to the
TransmitAck substitution transition. The marking of each
instance of a port place matches the tokens present on
the corresponding socket place of the associated substi-
tution transition. CPN tools automatically instantiates
the appropriate number of instances of each module and
associates these instances with substitution transitions.

Above we have seen how modules can exchange
tokens via port and socket places. It is also possible for
modules to exchange tokens via fusion sets. Fusion sets
allow a number of places (which may belong to different
modules) to be glued together into one compound place
across the hierarchical structure of the model.

2.5 Modelling of time

We now describe how timing information can be added
to CPN models. This will allow us to evaluate how effi-
ciently a system performs its operations, and it also
allows us to model and validate real-time systems, i.e.,
systems where the correctness of the system relies on the
proper timing of the events. With a timed CPN model
we may calculate performance measures, such as max-
imum queue lengths, mean waiting times, and through-
put. This will be illustrated in Sect. 6. We may also, e.g.,
verify whether a real-time system meets the required
deadlines. We present the time concept of CP-nets using
the non-hierarchical variant of the simple protocol. The
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Fig. 14 Timed CPN model for the protocol in the initial marking M0

timing constructs apply also to hierarchical CPN mod-
els, and CPN Tools supports simulation and analysis of
timed hierarchical CP-nets.

Now let us look at Fig. 14 which contains a timed CPN
model for the simple protocol. It is easy to see that the
CPN model is very closely related to the untimed CPN
model in Fig. 1.

The main difference between timed and untimed CPN
models is that the tokens in a timed CPN model—
in addition to the token colour—can carry a second
value called a time stamp. This means that the mark-
ing of a place where the tokens carry a time stamp is
now a timed multi-set specifying the elements in the
multi-set together with their number of appearances and
their time stamps. Furthermore, the CPN model has a
global clock representing model time. The distribution
of tokens on the places together with their time stamps
and the value of the global clock is called a timed mark-
ing. In a hierarchical timed CPN model there is a single
global clock that is shared among all the modules.

In general, a time stamp can be a non-negative inte-
ger or real. In the current implementation of CPN Tools,
only non-negative integers are supported. The time
stamp tells us the time at which the token is ready to
be used, i.e., the time at which it can be removed from
the place by an occurring transition. The tokens on a
place will carry a time stamp if the colour set of the
place is timed. A colour set is declared to be timed using
the CPN ML keyword timed. Figure 15 shows the col-
our set declarations for the timed model. It can be seen
that all colour sets, except BOOL are defined to be timed
colour sets.

The execution of a timed CPN model is controlled
by the global clock, and it works in a similar way as

Fig. 15 Colour sets for the timed CPN model in Fig. 14

the event queue found in most simulation engines for
discrete-event simulation. The model remains at a given
model time as long as there are binding elements that are
colour enabled (i.e., have the needed input tokens) and
are ready for execution (i.e., the required tokens have
time stamps which are less than or equal to the current
value of the global clock). Hence, in a timed CPN model
an enabled binding element must be both colour enabled
and ready in order to be able to occur. When there is no
longer such a binding element to be executed, the clock
is advanced to the earliest model time at which bind-
ing elements can be executed. Each marking exists in a
closed interval of model time (which may be a point, i.e.,
a single moment of time). As for untimed CPN models,
we may have conflicts and concurrency between binding
elements (and binding elements may be concurrent to
themselves)—but only if the binding elements are ready
to be executed at the same time.

Consider now the initial marking of the timed CPN
model for the protocol shown in Fig. 14. The colours of
the tokens are the same as in the initial marking of the
untimed CPN model of the protocol, but now the tokens
carry time stamps. As an example, the initial marking of
the place PacketsToSend is:

1‘(1,"COL")@0 +++
1‘(2,"OUR")@0 +++
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1‘(3,"ED ")@0 +++
1‘(4,"PET")@0 +++
1‘(5,"RI ")@0 +++
1‘(6,"NET")@0

The time stamp of tokens are written after the @ sym-
bol which is pronounced as “at”. In this case, all tokens
carry the time stamp 0. The +++ operator takes two
timed multi-sets as arguments and returns their union.
All other tokens in the initial marking also carry the
time stamp 0. The value of the global clock in the initial
marking is also 0. The initial marking of all places are
specified as an (untimed) multi-set. CPN Tools will auto-
matically attach the time stamp 0 if the initial marking
inscription of a place with a timed colour set does not
explicitly specify the time stamps of the tokens.

Consider the transition SendPacket and the binding
〈n=1, d="COL"〉 in Fig. 14. To occur, this binding needs
the presence of a token with colour1 on place NextSend
and the presence of a token with colour (1,"COL") on
place PacketsToSend. This is determined by the input
arc expressions by means of the enabling rule explained
in Sect. 2.2. We see that the two tokens that are needed
by SendPacket exist on the input places and that both
of them carry the time stamp 0, which means that they
can be used at time 0. Hence, the transition can occur at
time 0. When the transition occurs, it removes the two
tokens from the input places and adds a token to each of
the three output places. The colours of these tokens are
determined by the output arc expressions by means of
the occurrence rule explained in Sect. 2.2. However, it
is now also necessary to calculate the time stamps to be
given to the three output tokens. This is done by using
time delay inscriptions attached to the transition and/or
to the individual output arcs. Time delays inscribed on
the transition apply to all output tokens created by that
transition, while time delays inscribed on an output arc
only apply to tokens created at that arc. In Fig. 14 we
have attached a time delay inscription @+9 to the Send-
Packet transition, and a time delay inscription @+Wait
to the outgoing arc to PacketsToSend, where Wait is a
constant defined as:

val Wait = 100;

The arc expressions on the output arcs to the places
A and NextSend have no separate time delays. The time
stamp given to the tokens created on an output arc is
the value of the global clock plus the result of evaluat-
ing the time delay inscription of the transition plus the
result of evaluating the time delay inscription of the arc.
Hence, we conclude that the tokens added to the places
NextSend and A get the time stamp:

0 + 9 + 0 = 9 (1)
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Fig. 16 Marking M1 reached when SendPacket occurs at time 0
in M0

The first 0 is the time at which the transition occurs as
given by the global clock, 9 is the time delay inscribed on
the transition, and the second 0 is the time delay on the
output arc (since there is no time delay on the output
arc). Intuitively this models that the execution of the
send packet operation has a duration of 9 time units.

The arc expression on the output arc to place Packets-
ToSend has a separate time delay: @+Wait. This means
that the token added to PacketsToSend gets the time
stamp:

0 + 9 + 100 = 109 (2)

The 0 is the time at which the transition occurs, 9 is
the time delay inscribed on the transition, while 100 is
time delay inscribed on the output arc. Intuitively, this
represents the fact that we do not want to resend data
packet number 1 until time 109, i.e., until 100 time units
after the end of the previous send operation. This is
achieved by giving the token for data packet number
1 the time stamp 109—thus making it unavailable until
that moment of time. However, it should be noticed that
data packet number 2 still has time stamp 0. Hence, it
will be immediately possible to transmit this data packet,
if an acknowledgement arrives before time 109. When
SendPacket occurs at time 0, we reach the marking M1
which is partially shown in Fig. 16.

In marking M1 there are three binding elements that
have the needed tokens on their input places:

SP = (SendPacket, 〈n=1, d="COL"〉)
TP+ = (TransmitPacket,

〈n=1, d="COL", success=true〉)
TP− = (TransmitPacket,

〈n=1, d="COL", success=false〉)
SP can occur at time 109 (since it needs a token with

time stamp 109 and a token with time stamp 9). How-
ever, TP+ and TP− can occur already at time 9 (because
they need a token with time stamp 9). Since TP+ and
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Fig. 17 Marking M2 reached when TransmitPacket occurs at time
9 in M1

TP− are the first binding elements that are ready to
occur, one of these will be chosen (the two binding ele-
ments are in conflict with each other) and it will occur as
soon as possible, i.e., at time 9. Let us assume that TP+
is chosen to occur. It will remove the token from place A
and add a token to place B. The time stamp of this token
will be the sum of the time at which the transition occurs
(9) and the value obtained by evaluating the time delay
expression @+Delay() inscribed on the transition. The
function Delay takes a unit (()) as argument and is
defined as follows:

fun Delay() = discrete(25,75);

The function discrete is a predefined function pro-
viding a discrete uniform distribution over the closed
interval specified by its arguments. This means that a
callDelay() returns an integer from the interval [25,75]
and that all numbers in the interval have the same prob-
ability of being chosen. Intuitively, this represents that
the time needed to transmit a packet over the network
may vary between 25 and 75 time units, e.g., due to
the load on the network. Let us assume that Delay()
evaluates to 38. Then we reach the marking M2 which
is partially shown in Fig. 17. The above illustrates how
random functions can be used to give time stamps to
tokens.

In marking M2 there are two binding elements that
have the needed tokens on their input places:

SP = (SendPacket, 〈n=1, d="COL"〉)
RP = (ReceivePacket, 〈n=1, d="COL", k=1, data=""〉)

As before, SP can occur at time 109. However, RP
can occur already at time 47 (because it needs a token
with time stamp 47 and two tokens with time stamp 0).
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Fig. 18 Marking M3 reached when ReceivePacket occurs at time
47 in M2

Hence RP will be chosen and we will reach the marking
M3 which is partially shown in Fig. 18.

In marking M3 there are three binding elements that
have the needed tokens on their input places:

SP = (SendPacket, 〈n=1, d="COL"〉)
TA+ = (TransmitAck, 〈n=2, success=true〉)
TA− = (TransmitAck, 〈n=2, success=false〉)

SP can occur at time 109. However, TA+ and TA−
can occur already at time 64 (because they need a token
with time stamp 64). Hence TA+ or TA− will be chosen.
The transmission and reception of an acknowledgement
are similar as in the untimed CPN model and hence we
will not explain them in further detail.

In the timed CPN model considered above, all tokens
carry a time stamp since all colour sets of the places were
declared to be timed. However, this is generally not the
case. The modeller is allowed to specify whether each
individual type (colour set) is timed or not. The tokens of
timed colour sets carry time stamps while the tokens of
untimed colour sets do not. Tokens without time stamps
are always ready to participate in occurrences of binding
elements.

Consider the token on place NextSend. If the token
carries a time stamp, it is not possible for transitions
SendPacket and ReceiveAck to occur at the same model
time. This is due to the fact that when one of these tran-
sitions occurs, the time stamp of the token is increased,
which eliminates the possibility that the other transition
can occur at the same model time. This could represent a
sender that uses a single thread for sending data packets
and receiving acknowledgements. On the other hand, if
the token on NextSend did not carry a time stamp, then
these two transitions could occur at the same model
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time. This could be used to model a sender with sepa-
rate threads for sending and receiving.

It should be noted that the possible occurrence
sequences of a timed CPN model always form a sub-
set of the occurrence sequences for the underlying un-
timed CPN model, i.e., the model in which we remove
all time delay inscriptions (and all time stamps). This
means that the time delay inscriptions merely enforce a
set of additional constraints on the execution of the CPN
model—forcing colour-enabled binding elements to be
chosen when they are ready. Turning an untimed CPN
model into a timed model cannot create new behaviour
in the form of new occurrence sequences. As a conse-
quence it is often a useful modelling strategy to start by
investigating the functional/logical properties by means
of an untimed CPN model. Then the timing related to
events can be considered afterwards.

The occurrence of a transition is instantaneous, i.e.,
takes no time. However, as shown in the protocol exam-
ple above, it is easy to model that some actions in a
system have a non-zero duration. This is done by giving
the output tokens created by the corresponding tran-
sition time stamps that prevent the tokens from being
used until the time at which the action has finished.
As an example, TransmitPacket cannot occur until 9
time units after the occurrence of SendPacket—this

represents that the action to send a data packet takes
9 time units. An alternative approach would have been
to allow the occurrence of a transition to have a non-
zero duration. We could then remove the input tokens
at the moment where the occurrence begins and add
the output tokens when the occurrence ends. However,
such an approach would make the relationship between
a timed CPN model and its underlying untimed CPN
model much more complex. There would then be a lot of
reachable markings in the timed CPN model which are
unreachable in the untimed CPN model—because they
correspond to situations where one or more transitions
are partway through their occurrence (having removed
tokens from the input places, but not yet having added
tokens to the output places).

3 Construction of CPN models

This section introduces the GUI of CPN Tools and the
tools and features in CPN Tools for constructing CPN
models. There are tools for creating declarations, net
structure, inscriptions, and hierarchical models. Addi-
tional tools are available to improve the readability of
a model, including tools for changing line colours and
widths, and for aligning elements.

Fig. 19 Screenshot of CPN Tools
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3.1 Overview of the GUI

Figure 19 shows a screenshot of CPN Tools. The rect-
angular area to the left is the index. It includes the Tool
box which contains many of the tools that are available
for manipulating the declarations and modules that con-
stitute the CPN model. The Tool box includes tools for
creating and cloning (i.e., copying) the basic elements of
CPN models. Additionally, it contains a wide selection
of tools for manipulating the graphical layout and the
appearance of the objects in the CPN model. The lat-
ter set of tools is very important in order to be able to
create readable and graphically appealing CPN models.
The index also contains a model overview for each of the
models that are open. A model overview shows a vari-
ety of information including the name of the model, the
Declarations for the model, the modules of the model,
and the hierarchical structure of the model. The History
for a model shows a list of the operations that have been
performed on the model. This list contains only those
operations that can be undone and redone. Many oper-
ations can be undone, including editing operations, while
others cannot be undone, such as executing simulation
steps.

A small triangle to the left of an entry in the index
indicates either that the entry contains subentries or that
the entry can be expanded to show more information for
the entry. Clicking on a small triangle will open and close
the corresponding index entry. A triangle that points to
the right indicates a closed entry, while a triangle point-
ing downwards indicates an open entry. A subentry in
the index is indented to the right of its parent entry. For
example, in Fig. 19 the Tool box entry has been opened
to show its nine subentries (from Auxiliary to View),
and the declaration for the variable success has been
opened to show the type of the variable.

The remaining part of the screen is the workspace,
which in this case contains five binders (the rectangu-
lar windows) and a circular marking menu. Each binder
holds a number of items which can be accessed by click-
ing the tabs at the top of the binder (only one item is
visible at a time in each binder). There are two kinds
of binders. One kind contains the elements of the CPN
model, i.e., the modules and declarations. The other kind
contains tool palettes which contain the tools which the
user applies to construct and manipulate CPN models. A
tool in a tool palette can be picked up by clicking on the
appropriate tool cell. After picking up a tool, the mouse
cursor will change to show which tool has been picked
up. A tool that has been picked up is applied by clicking
on an appropriate target. In Fig. 19 one binder contains
three modules named Protocol, Sender, and Receiver,
another binder contains a single module named Network

together with the declaration of the colour setNOxDATA,
and a third binder contains the declaration of the con-
stant AllPackets. The two remaining binders contain
four different tool palettes to Create elements, change
their Style, perform simulations (Sim), and construct
state spaces (SS). Some items can be dragged from the
index to the binders, and from one binder to another
binder of the same kind. It is possible to position the
same item in two different binders, e.g., to view a mod-
ule in two different zoom factors.

A circular marking menu has been popped up on
top of the bottom-left binder. Marking menus are con-
textual menus that make it possible to select between
some of the possible operations for a given object. In
this example it shows some of the operations that can
be performed on a port place. Most of the tools that are
available in a marking menu are also available in a tool
palette, and vice versa.

3.2 Construction of model elements

The New Net and Load Net tools are used to create
a new model and load an existing model, respectively.
These tools can be found in the Net tool palette or in
the marking menu for the workspace. When a model is
created or loaded, its model overview will be added to
the index.

The colour sets, variables, and functions that are used
in inscriptions must be defined in Declarations for the
model. The Declarations that belong to a model can be
seen in the index in the model overview. New declara-
tions are added using the New Declaration tool which
can be found in relevant marking menus. Declarations
can be grouped in declaration blocks. In Fig. 19, many
of the declarations for the Protocol.cpn model can be
seen, and the Standard declarations entry is a declara-
tion block that contains a number of default declara-
tions that are included when a new model is created.
Keyboard shortcuts can be used to jump from one dec-
laration to the next and to add a new declaration after
a declaration that is being edited. Declarations can be
viewed and edited in the index and in declaration sheets
in binders.

The tools for creating net structure are found in the
Create palette which is shown in Fig. 20. The available
tools (from left to right and top to bottom) are:

Fig. 20 Tools for creating net
structure in the Create palette
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Fig. 21 Tool options in the
index for the Create Place
tool

– Create a transition.
– Create a place.
– Create an arc.
– Create a vertical guideline.
– Delete an element.
– Clone, i.e., copy, an element.
– Change direction of an arc.
– Create a horizontal guideline.

The tools from the Create palette can also be found
in marking menus, with the exception of the tools for
creating guidelines which will be explained below. Each
tool can be applied to certain kinds of targets. For exam-
ple, the tools for creating places and transitions can be
applied to modules in binders, while the tool for creating
an arc must be applied first to a place (transition), and
then to a transition (place).

A number of tools have options that affect the behav-
iour of the tool. These tool options can be changed, and
they are accessible in the index and via tool cells in pal-
ettes. Figure 21 shows the tool options for the Create
Place tool. With these options it is possible to change
the default width and height of new places.

Inscriptions must be added to nodes and arcs. After
creating a new place, transition or arc, text-edit mode
will be entered, and it will be possible to add the first
inscription to the element. Arcs have only one inscrip-
tion, while places and transitions have several kinds of
inscriptions. The TAB key is used to cycle between the
different inscriptions for a node.

There are a number of different tools and features
that can be used to improve the layout, and therefore
the readability, of a model. The tools in the Style pal-
ette are used to change the graphical attributes of model
objects. There are tools for changing line and fill colour,
line widths, and arrowhead size.

Nodes and arc bend points can be aligned using guide-
lines and automatic snap-to-alignment features. Objects
will automatically be snapped to vertical or horizontal
alignment whenever possible. For example, if an arc is
added between two nodes that are almost aligned, then
they will be moved into alignment with each other, or
if a node that is attached to another node via an arc
is moved, then it will be snapped into alignment with
the other node whenever it is moved close enough into
alignment. Similarly, inscriptions can be snapped to var-
ious different snap points for their parent objects. For
example, transitions have snap points at each corner as

Fig. 22 A group of elements in a module

well as at the middle of each side, and inscriptions can
be snapped to these points. Several different elements
can be aligned by snapping them to guidelines. All of the
elements that are snapped to a guideline will be moved
when the guideline is moved.

New model elements do not need to be created from
scratch because they can be created by cloning, i.e., copy-
ing, existing elements. Many kinds of elements can be
cloned, including inscriptions, nodes together with all
their inscriptions and modules. When an object is cloned,
all of its graphical attributes, such as size and line col-
our, are cloned as well. Objects can be cloned within
the same model or between two models (more than one
model may be open at a time in CPN Tools). It is also
possible to clone just the graphical attributes from one
object to another.

It can be tedious to perform the same operation on a
number of individual elements, such as changing the col-
our of model elements, or moving and realigning model
elements. In CPN Tools, it is possible to create groups,
and to perform operations on the elements in a group.
Group tabs at the bottom left of a module in a binder
indicate which groups are defined for the module. The
elements that are not in the group are dimmed, as shown
in Fig. 22. If a tool is applied to an element in a group, the
tool will be applied to all of the other relevant elements
in the group. For example, changing the colour of any
element in the group will change the colour of all of the
elements in the group, while changing the direction of an
arc will only affect the arcs in the group. Regular groups
can only contain elements from the same module, but
global groups can contain elements from any module in
the model.

3.3 Construction of hierarchical models

The tools for creating hierarchical nets are found in the
Hierarchy palette which is shown in Fig. 23. The avail-
able tools (from left to right and top to bottom) are:
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Fig. 23 The hierarchy palette

Fig. 24 Overview of hierarchical relationships

– Move a transition or group to a new submodule.
– Replace a substitution transition with its submod-

ule.
– Assign a submodule to a substitution transition.
– Assign a port to a socket.
– Set port type to input.
– Set port type to output.
– Set port type to input/output.
– Assign a place to a fusion set.

These tools support both top-down and bottom-up
construction of CPN models. Supporting a top-down
approach, the Move to Submodule tool will move a
group of elements from one module to a new submod-
ule, create a substitution transition with appropriate arcs
in the original module, create appropriate port places in
the submodule, and assign ports to sockets. The Assign
Submodule tool supports a bottom-up approach, in that
it will assign an existing module to be the submodule
associated with an existing (substitution) transition, and
it will automatically assign port places to sockets when-
ever possible. In addition, the Clone tool can also be
used to clone hierarchy elements, such as port-type tags,
or even a substitution transition and all of its submod-
ules.

Information about hierarchical relationships can be
seen in modules and the index, as shown in Fig. 24. The
left-hand side of the figure shows the names of the mod-
ules from a model overview. A small triangle next to a
module name indicates that it has submodules, and the
submodules of the module are listed below and indented
to the right of the supermodule. In the example, the
Protocol module is the top-level module, and it has three
submodules. One of these submodules (Network) also
has two submodules. A number in parentheses after the
module name indicates that there are multiple instances,
while a missing number indicates that there is only one
instance of that module in the model.

Instantiation of modules is handled fully automati-
cally by CPN Tools, and the user can access the indi-
vidual instances of modules. It should be noted that
instantiation of modules is done prior to simulation of
the CPN model. Hence, the number of instances of mod-
ules is fixed throughout the simulation of a hierarchical
model, and it is not possible to dynamically instantiate
new modules during the simulation.

The right-hand side of Fig. 24 shows hierarchical infor-
mation that can be seen in a module. The small tag
immediately below TransmitData indicates that it is a
substitution transition, and that it is associated with the
submodule Transmit. The list to the lower right of Trans-
mitData shows the assignments between its sockets and
the port places in submodule Transmit. The list is opened
and closed by clicking on the small triangle in the lower
left-hand corner of the substitution transition. Place A
is a socket for TransmitData, but the small tag next to
the place indicates that it is also an input port. The tags
associated with port places, substitution transitions, and
fusion places are collectively referred to as hierarchy
tags. Marking menus for some hierarchy tags contain
operations for opening and showing sub- and super-
modules in binders. This makes it possible to navigate
efficiently.

3.4 Syntax check and code generation

CPN Tools performs syntax and type checking, and sim-
ulation code generation. Error messages are provided to
the user in a contextual manner next to the object caus-
ing the error. Figure 25 shows an example of an error
message for a place inscription.

The syntax check and code generation are incremen-
tal and performed in parallel with editing. This means
that it is possible to execute parts of a CPN model even
if the model is not complete, and it means that when
parts of a CPN model are modified, syntax check and
code generation are only performed on the elements
that depend on the parts that were modified. Some ele-
ments will not be checked until they have enough infor-

Fig. 25 Contextual error message
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mation to be syntactically correct. For example, a place
will not be checked until it has a colour set inscription,
and a transition will not be checked until all of its sur-
rounding places can be checked, and all of its surround-
ing arcs have arc inscriptions.

The main outcome of the code generation is the simu-
lation code. The simulation code contains the functions
for inferring the set of enabled binding elements in a
given marking of the CPN model, and for computing
the marking reached after an enabled binding element
occurs.

3.5 Graphical feedback and help

CPN Tools uses several kinds of graphical feedback to
provide information when editing and analysing a CPN
model. Help information is also available. Colour-coded
auras are used to highlight objects with particular char-
acteristics or to indicate different kinds of relationships
between objects. For example, bright red auras indi-
cate errors. Auras are associated with places, transitions,
arcs, inscriptions, declarations, module tabs, and index
entries, such as module names. Auras are propagated
to parent-like objects whenever possible. In Fig. 25 the
place has an inscription with an error, and the place will
therefore have a red aura. The red aura will be prop-
agated to the tab for the module in the binder, to the
name of the module in the index, and to the model
name. Error auras are always shown, and they will be
removed only if the error is fixed. Other kinds of auras
appear only when the cursor hovers over a particular
kind of object. For example, dark blue auras indicate
dependencies between declarations and model objects,
and they appear only when the cursor hovers over a dec-
laration or a node. In Fig. 19, one of the declarations has
an aura (in dark blue) because the cursor has been used
to open a marking menu for a place that is dependent
on that declaration.

A speech bubble is a yellow rectangle that provides
context-sensitive information, such as an error message.
Some speech bubbles appear automatically, while oth-
ers appear after a slight delay when the cursor is moved
over an appropriate object. For example, moving the
cursor over a model name will cause a speech bubble
containing the full path to the model to appear. On the
other hand, speech bubbles with error messages for net
structure, like the one in Fig. 25 appear automatically.

Status bubbles are colour-coded bubbles that occa-
sionally appear at the bottom of the index. A speech
bubble is often associated with the status bubble, as
shown in Fig. 26. It may be necessary to move the cursor
over a status bubble to see the corresponding speech

Fig. 26 Status bubble at bottom of index

bubble. Green indicates that an operation completed
successfully, red indicates an error, and light purple indi-
cates that a time-consuming operation, such as a long
simulation, is being performed.

Detailed help information can be accessed in a num-
ber of ways. Dragging the Help index entry to the work-
space will open the main page for the offline help in a
Web browser. A brief tool tip describing the function-
ality of the tool will appear if the cursor hovers over a
tool cell in a tool palette. Marking menus for tool cells
in palettes and for palette tabs in binders contain tools
for opening a relevant help page in a browser.

4 Simulation

The simulator of CPN Tools exploits a number of
advanced data structures and algorithms for efficient
simulation of large hierarchical CPN models [28]. The
simulator exploits the locality property of Petri nets,
which ensures that the occurrence of a transition only
affects its immediate surroundings. This ensures that the
number of steps executed per second in a simulation is
independent of the number of places and transitions in
the CPN model. This means that simulation scales to
large CPN models.

The CPN Tools simulator only executes steps consist-
ing of a single binding element. The marking resulting
from the occurrence of an enabled step with multiple
binding elements is the same as letting the binding ele-
ments in the step occur one after each other in some
arbitrary order. Hence, markings that can be reached
via occurrence sequences consisting of steps with mul-
tiple binding elements can also be reached via occur-
rence sequences with steps consisting of a single binding
element.

CPN Tools uses graphical simulation feedback, as
shown in Fig. 27, to provide information about the mark-
ings that are reached and the binding elements that are
enabled and occur during a simulation. A small circle
next to a place indicates the number of tokens on the
place in a marking, and a box next to the circle shows
the colours of the tokens. In Fig. 27, place DataReceived
contains one token with value "COL". Green auras indi-
cate enabled transitions, and the auras can be found on
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Fig. 27 Simulation feedback in CPN Tools

Fig. 28 Simulation tool palette

transitions, on module names in binders and the index,
and on submodule tags. The box below ReceivePacket
will be discussed below.

Many of the tools that are available for simulating
CPN models can be found in the simulation tool palette
shown in Fig. 28. A VCR (Video Cassette Recorder)
metaphor is used for the graphical symbols representing
the simulation tools. The simulation tools can be picked
up with the mouse cursor and applied to the CPN model.
The available tools (from left to right) are:

– Return to the initial marking.
– Stop an ongoing animated automatic simulation.
– Execute a single transition with a manually chosen

binding.
– Execute a single transition with a random binding.
– Execute an animated automatic simulation, i.e., exe-

cute an occurrence sequence with randomly chosen
binding elements and display the current marking
between each step.

– Execute a fast automatic simulation, i.e., execute an
occurrence sequence with randomly chosen bind-
ing elements without displaying the current marking
between each step.

– Evaluate a CPN ML expression (to be explained in
Sect. 6.6).

4.1 Interactive and automatic simulations

When a CPN model is simulated in interactive mode, the
simulator calculates the set of enabled transitions in each
marking encountered. Then it is up to the user to choose
between the enabled transitions and bindings. Figure 27
shows an example where the user is in the process of
choosing between the enabled bindings of the Receive-
Packet transition. The choice between the enabled bind-
ings is done via the rectangular box opened next to the
transition. It lists the variables of the transition and the
values to which they can be bound in the current mark-
ing. In this case, the value 2 has already been bound to
the variable k and the value "COL" has been bound to
data. This is done automatically by the simulator since
there is only one possible choice for these variables. The
user still has a choice in binding values to the variables
n and d. The user may also leave the choice to the sim-
ulator which uses a random number generator for this
purpose. In the above case it suffices for the user to bind
either n or d since the value bound to the other variable
is then uniquely determined and will be automatically
bound by the simulator.

After the chosen binding element has been executed,
the marking and enabling information is updated and
presented to the user, who either chooses a new enabled
binding element or leaves the choice to the simula-
tor, and so on. This means that it is the simulator that
makes all the calculations (of the enabled binding ele-
ments and the effect of their occurrences), while it is
the user who chooses between the different occurrence
sequences (i.e., the different behavioural scenarios). If
it is not necessary to choose a particular binding of vari-
ables, the user can use the Single Step tool to execute a
single transition. The tool can be applied to different tar-
gets, and it will have different effects depending on the
target. For example, if the tool is applied to an enabled
transition, then that particular transition will occur, and
if the tool is applied to a binder, then a randomly cho-
sen enabled transition on a module in the binder will
occur. An interactive simulation is by nature slow, since
it takes time for the user to investigate the markings and
enablings and to choose between them. This means that
only a few steps can be executed each minute and the
working style is very similar to single-step debugging
known from conventional programming environments.

When a CPN model is simulated in animated auto-
matic mode, the simulator calculates the set of enabled
transitions in each marking encountered. The simulator
also chooses between the enabled transitions and bind-
ings. The simulator feedback is updated after each step
in an animated automatic simulation. The Play tool, i.e.,
the third tool from the right in Fig. 28, has tool options
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Fig. 29 Dead marking Mdead reached at the end of a simulation

which determine how many steps should be executed
in an animated automatic simulation, and how long the
simulator should pause between each step. The simula-
tor will perform the specified number of steps, unless it
reaches a state in which there are no more enabled tran-
sitions or until the Stop tool from the simulation palette
is applied.

A CPN model can also be simulated in fast automatic
mode. This kind of simulation is similar to a program
execution, and a speed of several thousand steps per
second is typical. Before the start of a fast automatic
simulation, the user specifies one or more stop criteria,
e.g., that 100,000 steps should occur or 50,000 units of
model time should elapse. If one of the stop criteria
becomes fulfilled or if there are no more enabled tran-
sitions, the simulation stops and the user can inspect the
marking which has been reached. There are also a num-
ber of different ways in which the user can inspect the
markings and the binding elements that occurred during
the simulation. We shall briefly return to this at the end
of this section.

A simulation of the protocol example may stop in the
marking Mdead shown in Fig. 29. This marking is a dead
marking because there are no enabled transitions. Due
to the non-determinism in the CPN model, we cannot
guarantee that the dead marking will be reached since
it is possible to keep losing packets and acknowledge-
ments. However, if we reach a dead marking it will be
the marking shown in Fig. 29. Here, we see that all six
data packets have been received (in the correct order).
The sender has stopped sending because NextSend has
a token with colour 7 and there is no data packet with
number 7. All the places A, B, C, and D connecting the
network to the sender and receiver are empty. Finally,

place NextRec has a token with colour 7. Hence, this
marking represents the desired terminal state of the pro-
tocol system. By making a number of automatic simu-
lations of the CPN model, it is possible to test that the
simple protocol design appears to be correct. Conduct-
ing a set of automatic simulations does not guarantee
that all possible executions of the protocol have been
covered. Hence, we cannot in general use simulation
to verify properties of the protocol, but it is a power-
ful technique for testing the protocol and for locating
errors. In Sect. 5 we will introduce state space analy-
sis which makes it possible to ensure that all possible
executions are covered. This makes it possible to verify
systems, i.e., prove that different behavioural properties
are present or absent in a model.

As mentioned earlier in this section, the user may be
interested in inspecting some of the markings and some
of the binding elements that occurred during a simu-
lation. A simple (and brute-force) way to do this is to
inspect the simulation report which lists the steps that
have occurred. Figure 30 shows the beginning of a sim-
ulation report for the hierarchical model from Sect. 2.4.
We see the first three transitions that occurred. A simu-
lation report specifies the names of the transitions that
occur during a simulation, the module instances where
the transitions are located, and the user determines if the
report should specify the values bound to the variables
of the occurring transitions. In this case, the SendPacket
transition in instance 1 of the Sender module occurred
in step 1, the Transmit transition in instance 2 of the
Transmit module occurred in step 2, and the Receive-
Packet transition in instance 1 of the Receiver module
occurred in step 3. The number 0 following the step
number specifies the model time at which the transition



Coloured Petri Nets and CPN Tools 235

Fig. 30 Beginning of a simulation report

occurs. Since the hierarchical model of the simple pro-
tocol presented in Sect. 2.4 is untimed, all steps occur at
time zero.

4.2 Simulation breakpoint monitors

Simple simulation tool options can specify that a sim-
ulation should stop after a certain number of steps or
after a certain amount of model time has passed, but in
many cases it can be useful to stop a simulation in a par-
ticular state or after a particular transition has fired. In
CPN Tools, monitors can be used to examine the binding
elements that occur and the markings that are reached
during a simulation. Different kinds of monitors can be
used for different purposes. Breakpoint monitors can be
used to stop simulations when specific conditions are ful-
filled. A transition enabled monitor is a standard break-
point monitor that can be associated with a transition,
and the monitor will stop a simulation when the transi-
tion is enabled (or disabled, as determined by an option
for the monitor). Another standard breakpoint monitor
can be used to stop a simulation when the marking of a
particular place is empty (or not empty, as determined by
an option for the monitor). A generic breakpoint moni-
tor can be used to define a model-specific condition that
will determine when a simulation should stop. It is then
checked at certain steps in the simulation whether the
condition is fulfilled.

Each monitor has monitoring functions that deter-
mine its functionality. For transition enabled monitors,
the monitoring functions are hidden from the user. How-
ever, for generic breakpoint monitors, the monitoring
function is accessible, and it must be modified by the
user. When a new monitor is created, template code for
the accessible monitoring functions is automatically gen-
erated. The template code must be modified to obtain
the desired behaviour. This means that the user does
not have to write monitoring functions from scratch.

Fig. 31 Overview of a monitor in the index

A monitoring function often consists of 5–10 lines of
CPN ML code. Each monitor is associated with a group
of nodes consisting of zero or more places and zero or
more transitions in the model. A monitor can only exam-
ine the nodes with which it is associated. For a generic
breakpoint monitor, the user must define a predicate
function that determines when a simulation should stop.
A predicate function will be called after certain steps in
a simulation, and it should return the value true when
the simulation should stop.

An example of a model-specific breakpoint monitor
would be a monitor that will stop a simulation of the pro-
tocol if the sender receives an acknowledgement which
is lower than the sequence number of the data packet
that is currently being sent. In this case, the monitor
is associated with the ReceiveAck transition only. The
predicate function for this monitor will be invoked each
time the ReceiveAck transition occurs and it will return
true if the value bound to the variable k is greater than
the value bound to the variable n.

A monitor is created by applying one of the tools
from the Monitoring palette (not shown) to an appropri-
ate target. The target may be a single place or transition,
a group of nodes, a global group of nodes, or the name
of the model. Note that a monitor may be associated
with nodes from different modules. After a monitor has
been created, it will be added to the index, where differ-
ent kinds of information related to the monitor can be
viewed and modified. Figure 31 shows the information
that is added to the index when a generic breakpoint
monitor is created for the ReceiveAck transition in the
Protocol module. The monitor overview shows the user-
specified name of the monitor (CheckReceivedAck), the
type of the monitor ((generic) breakpoint), the nodes
that the monitor is associated with, and the accessi-
ble monitoring functions. The predicate function for the
CheckReceivedAck monitor looks as follows:

fun pred
(Protocol’Receive_Ack (1, {k,n})) = n < k

Since this monitor is associated with only one tran-
sition, the predicate function can only examine binding
elements for the ReceiveAck transition. The predicate
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function will automatically be called in CPN Tools after
the ReceiveAck transition occurs, and it will not be
called after any of the other transitions in the model
occur. The function inspects the values of the variables
n and k and compares them as described above. For fur-
ther details on implementing model-specific monitors
we refer to [10].

It is also possible to disable monitors, which means
that it is possible to ensure that a monitor will not be
activated during a simulation without having to remove
the monitor from the model.

5 State space analysis

Simulation can only be used to consider a finite number
of executions of the model being analysed. This makes
simulation suited for detecting errors and for obtaining
increased confidence in the correctness of the model,
and thereby the system. For the simple protocol we may
conduct a number of simulations which show that the
model of the protocol always seems to terminate in the
desired state where all data packets have been received
in the correct order. This makes it likely that the proto-
col works correctly, but it cannot be used to ensure this
with 100% certainty since we cannot guarantee that the
simulations cover all possible executions. Hence, after
conducting a set of simulations, there may still exist exe-
cutions of the model leading to a state where, e.g., the
data packets are not received in the correct order.

Full state spaces represent all possible executions of
the model being analysed. The basic idea of full state

spaces is to calculate all reachable states (markings) and
all state changes (occurring binding elements) of the
CPN model and represent these in a directed graph
where the nodes correspond to the set of reachable
markings and the arcs correspond to occurring binding
elements. The state space of a CPN model can be com-
puted fully automatically and makes it possible to auto-
matically verify, i.e., prove in the mathematical sense
of the word that the model possesses a certain formally
specified property. We present state spaces and behavio-
ural properties using a non-hierarchical CPN model.
However, full state spaces generalise to hierarchical and
timed CPN models, and CPN Tools supports full state
spaces for hierarchical and timed CPN models.

5.1 Revised model for state space analysis

To introduce state space analysis we consider the simple
protocol from Fig. 1. Before we construct a state space
for the model of the protocol, we will make a small modi-
fication. The CPN model in Fig. 1 has infinite occurrence
sequences in which the transition SendPacket occurs an
infinite number of times immediately after each other
(retransmitting the first packet an infinite number of
times). This means that there is an infinite number of
reachable markings. To obtain a finite number of reach-
able markings, we limit the number of tokens which may
simultaneously reside on the network buffer places A, B,
C, and D. This is done by adding a new place Limit as
shown in Fig. 32. It has the colour set UNIT defined as:

colset UNIT = unit;
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Fig. 32 CPN model used for state space analysis
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where unit is the basic CPN ML type containing the
single value (). The initial marking of Limit is the multi-
set 3‘(). Tokens with the token colour () can be
thought of as being “uncoloured” tokens where the
value attached carries no information (since it can only
take one possible value). A token is removed from place
Limit each time a packet is sent to the network, and
a token is added to place Limit, each time a packet is
removed or lost from the network. This means that the
total number of tokens on the five places A, B, C, D, and
Limit is constant and identical to the number of tokens
which Limit has in the initial marking.

Clearly, making this kind of modification changes the
behaviour of the model, and it should be done with
care. However, for models with very large state spaces,
it is often useful to analyse the restricted behaviour of a
model in order to increase our confidence in the correct-
ness of the unrestricted model. For the protocol exam-
ple, we have chosen to limit the number of tokens on the
network buffer places to three tokens. This configuration
allows packets to overtake each other, and it also allows
for duplicate packets to be in the buffer places. How-
ever, it significantly limits how often packets overtake
each other as well as the number of duplicate packets in
buffer places. If analysis shows that the restricted model
is correct, then this will increase our confidence in the
fact that the unrestricted model is also correct. Simi-
larly, if errors are found in the restricted model, then
the same errors exist in the unrestricted model of the
protocol. It is unlikely that we would obtain additional
insights into the behaviour of the unrestricted model by
increasing the number of tokens allowed in the buffer
places in the restricted model. On the other hand, if we
had limited the number of tokens in buffer places to just
one, then it would no longer be possible for packets to
overtake each other, nor would it be possible to have
duplicate packets in the buffer places. In this case, the
restriction is probably too radical, and the behaviour
of the restricted model would be significantly different
from the unrestricted model.

5.2 Full state spaces

A full state space is a directed graph, where there is a
node for each reachable marking and an arc for each
occurring binding element. There is an arc labelled with
a binding element (t, b) from a node representing a
marking M1 to a node representing a marking M2 if
and only if the binding (t, b) is enabled in M1 and the
occurrence of (t, b) in M1 leads to the marking M2.

Figure 33 shows an initial fragment of the state space
of the CPN model in Fig. 32. This fragment has been cre-
ated using the support for visualisation of state spaces

in CPN Tools. Each node is inscribed with three inte-
gers. The topmost integer is the node number and the
two integers separated by a colon give the number of
predecessor and successor nodes. Node 1 corresponds
to the initial marking, and the figure shows all markings
reachable by the occurrence of at most three binding
elements starting in the initial marking. The rectangular
node descriptor associated with each node gives infor-
mation about the marking of the individual places in
the state represented by the node. The node descrip-
tor lists the places which have a non-empty marking.
We have omitted the marking of place PacketsToSend
since this place always contains the six tokens corre-
sponding to the data packets to be sent. The rectangular
arc descriptor associated with each arc gives information
about the corresponding binding element. The node and
arc descriptors have a default content, but options are
available for the user to control the contents of the de-
scriptors.

In the initial marking only one binding element
(SendPacket,〈n=1,d="COL"〉) is enabled and it leads
to the marking which is identical to the initial mark-
ing except that there is now also a token with colour
(1,"COL") on place A, and there is one less token on
place Limit. In Fig. 33, this marking is represented by
node 2. In the marking corresponding to node 2, we
have three enabled binding elements:

SP = (SendPacket, 〈n=1, d="COL"〉)
TP+ = (TransmitPacket,

〈n=1, d="COL", success=true〉)
TP− = (TransmitPacket,

〈n=1, d="COL", success=false〉)
and their occurrence lead to the markings represented
by nodes 3, 4, and 1, respectively. The full state space
for the CPN model has 13,215 nodes and 52,784 arcs
and is far too big to be conveniently represented as a
drawing. Drawing fragments of a state space, like the
one in Fig. 33, can, however, be a very effective way of
analysing the markings reachable within a small number
of steps from a given marking.

State spaces are calculated fully automatically by the
CPN state space tool using a state space construction
algorithm. CPN Tools stores the directed graph repre-
senting the state space in internal memory. This means
that the full state space can only be generated if it fits
into the available computer memory. The tool supports
a number of stop and branching options that makes it
possible for the user to control the state space genera-
tion.

The generation of the full state spaces is in most cases
followed by the generation of the Strongly Connected
Component Graph (SCC-graph) which is derived from
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Fig. 33 Initial state space fragment for CPN model in Fig. 32

the graph structure of the state space. The nodes in
the SCC-graph are subgraphs called strongly connected
components (SCCs) and are obtained by making a dis-
joint division of the nodes in the state space such that
two state space nodes are in the same SCC if and only
if they are mutually reachable, i.e., there exists a path
in the state space from the first node to the second
node and vice versa. The SCC-graph is used by CPN
Tools to determine a number of the standard behavio-
ural properties of the model (as we will explain below)
and the structure of the SCC-graph quite often gives
useful information about the overall behaviour of the
model being analysed.

Tools for generating, investigating, and displaying
state spaces are found in the State Space palette of
CPN Tools which is shown in Fig. 34. The available tools
(from left to right and top to bottom) are:

– Generate model-specific code for state space
analysis.

– Generate a state space.
– Generate an SCC graph.
– Save a state space report.
– Display a node in a state space.
– Display the successors of a state space node.
– Display the predecessors of a state space node.

Fig. 34 The State Space
palette

– Evaluate a CPN ML expression that returns a list of
either state space nodes or state space arcs, and dis-
play the resulting nodes and/or arcs from the state
space.

– Display the marking corresponding to a state space
node in the simulator.

– Add the current simulator state to the state space.

5.3 State space report

The first step when conducting state space analysis is
usually to ask for a state space report, which provides
some basic information about the size of the state space
and standard behavioural properties of the CPN model.
For the CPN model in Fig. 32, the state space report
looks as shown in Figs. 36, 37, 38, and 39. First we have
some state space statistics (see Fig. 35) telling how large
the state space is. For the model of the protocol we have
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13, 215 nodes and 52, 784 arcs. The construction of the
full state space took 53 s. We also get statistics about
the SCC-graph. It has 5, 013 nodes and 37, 312 arcs, and
was calculated in 2 s. The fact that there are fewer nodes
in the SCC-graph than in the state space immediately
tells us that there exist cycles in the state space of the
simple protocol. This implies that we can have infinite
occurrence sequences and that the protocol may not
terminate.

The next two parts of the state space report con-
tain information about the boundedness properties. The
boundedness properties tell how many (and which)
tokens a place may hold—when we consider all reach-
able markings.

Figure 36 specifies the best upper and lower integer
bounds. The best upper integer bound of a place speci-
fies the maximal number of tokens that can reside on a
place in any reachable marking. The best upper integer
bound of the place DataReceived is 1 which means that
there is at most one token on place DataReceived, and
there exists reachable markings where there is one token
on DataReceived. This is what we would expect, since
DataReceived is always supposed to contain a single
token with a colour corresponding to the data that has
been received. The place A has a best upper integer
bound of 3 which means that in any reachable marking
there are at most three tokens on A, and there exists a
reachable marking where there is exactly three tokens
on A. Similar remarks apply to the places B, C, and D.
This is what we would expect, since we modified the
original model by introducing the Limit place to ensure
that there are at most three tokens simultaneously on the
places A, B, C, and D. What we learn from the best upper
integers bounds of the four network places is that there
are markings where the maximum number of packets
allowed simultaneously on the network are all in one
network buffer.

The best lower integer bounds for a place specifies the
minimal number of tokens that can reside on the place
in any reachable marking. The place DataReceived has

Fig. 35 State space report—statistics

Fig. 36 State space report—integer bounds

a best lower integer bound of 1 which means that there
is always at least one token on this place. Together with
the best upper integer bound of 1 this means that there
is exactly one token on this place in any reachable mark-
ing. When the best upper and lower integer bound are
equal it implies that the place always contains the same
number of tokens (as given by the two integer bounds)—
even if the colour of these tokens may vary. For example,
place DataReceived always contains exactly one token,
and place PacketsToSend always contains exactly six
tokens. The best lower integer bound of the place A is
0 which means that there exists a reachable marking
in which there are no tokens on this place. A similar
remark applies to the places B, C, and D.

Above, we have considered the minimal and maximal
number of tokens that may be present on a place ignor-
ing the token colours. Figure 37 specifies the best upper
and lower multi-set bounds. These bounds consider not
only the number of tokens, but also the colours of the
tokens. The best upper multi-set bound of a place spec-
ifies for each colour in the colour set of the place the
maximal numbers of tokens that is present on this place
with the given colour in any reachable marking. This
is specified as a multi-set, where the coefficient of each
value is the maximal number of tokens with the given
value.

As an example, the place C has the following multi-set
as the best upper multi-set bound:

3‘2 ++ 3‘3 ++ 3‘4 ++ 3‘5 ++ 3‘6 ++ 3‘7

This specifies that there is a maximum of three tokens
with the colour 2 on C in any reachable marking (and
similarly for the colours 3, 4, 5, 6, 7). It also speci-
fies that there exists a reachable marking where there
are three tokens with the colour 2 on the place. The
best upper multi-set for C also specifies that there can
never be a token with the colour 1 on the place. This
is expected, since the acknowledgements sent by the
receiver always specify the data packet expected next,
and because the first acknowledgement (with sequence
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Fig. 37 State space report—multi-set bounds

number 2) is sent after the data packet with sequence
number 1 is received.

As another example, consider the place
DataReceived which has the following best upper multi-
set bound:

1‘"" ++ 1‘"COL" ++ 1‘"COLOUR" ++

1‘"COLOURED " ++ 1‘"COLOURED PET" ++

1‘"COLOURED PETRI " ++ 1‘"COLOURED PETRI NET"

This specifies a maximum of one token with the col-
our "" on DataReceived in any reachable marking (and
similarly for the other values in the multi-set). The size
of the above multi-set is 7—even though DataReceived
has a single token in each reachable marking as specified
by the best upper and lower integer bounds in Fig. 36.
From the best upper multi-set bound and the best upper

and lower integer bounds it follows that the possible
markings of the place DataReceived are:

1‘""
1‘"COL"
1‘"COLOUR"
1‘"COLOURED "
1‘"COLOURED PET"
1‘"COLOURED PETRI"
1‘"COLOURED PETRI NET"

This corresponds to the expected prefixes of the data
being sent from the sender. From the boundedness prop-
erties we cannot see the order in which these markings
are reached.

Above we have illustrated that the integer and the
multi-set bounds often tell us different and complemen-
tary “stories”. The integer bounds of DataReceived tell
us that the place always has exactly one token, but
nothing about the possible colours of this token. The
best upper multi-set bound of DataReceived tells us the
tokens colours we may have at the place, but not that
there is only one token at a time. It should be noted that
there is no guarantee that there exists a reachable mark-
ing with the multi-set equal to the best upper multi-set
bound. This is illustrated by the place DataReceived.

The best lower multi-set bound of a place specifies for
each colour in the colour set of the place the minimal
numbers of tokens that is present on this place with the
given colour in any reachable marking. This is speci-
fied as a multi-set, where the coefficient of each value
is the minimal number of tokens with the given value.
Best lower multi-set bounds give, therefore, information
about how many tokens of each colour that are always
present on a given place. All places for the simple pro-
tocol except PacketsToSend have the empty multi-set
empty as best lower multi-set bound. This means that
there are no tokens which are always present on these
places. However, we cannot conclude that there exists a
reachable marking with no tokens on these places. This
is illustrated by DataReceived, NextSend, and NextRec
which always have one token each. The best lower multi-
set for PacketToSend is:

1‘(1,"COL") ++ 1‘(2,"OUR") ++ 1‘(3,"ED ")++
1‘(4,"PET") ++ 1‘(5,"RI ") ++ 1‘(6,"NET")

This means that there is at least one token with the
colour (1,"COL") on PacketToSend in any reachable
marking (and similarly for the other values in the multi-
set). This is as expected since the data packet being
removed from PacketsToSend when SendPacket
occurs is immediately put back again.
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Fig. 38 State space report—home properties

Figure 38 shows the part of the state space report spec-
ifying the home properties. The home properties tell us
that there exists a single home marking, which has the
node number 4868. A home marking Mhome is a mark-
ing which can be reached from any reachable marking.
This means that it is impossible to have an occurrence
sequence which cannot be extended to reach Mhome. In
other words, we cannot do things which will make it
impossible to reach Mhome afterwards.

In the protocol system we have a single home mark-
ing. By asking CPN Tools to display the marking cor-
responding to node 4868 from the state space, we get
the marking that is shown in Fig. 29. It can be seen that
this is the marking in which the protocol has successfully
finished the transmission of all six data packets. The fact
that this is a home marking means that no matter what
happens when the protocol is executed (e.g., packet loss
and overtaking of packets on the network), it is always
possible to reach the marking where the transmission
of all six data packets has been completed successfully.
It should be noted that we only know that it is possible
to reach the home marking Mhome from any reachable
marking M. There is no guarantee that Mhome actually
will be reached from M, i.e., there may exist occurrence
sequences that start in M and never reach Mhome. As
an example, the simple protocol has the infinite occur-
rence sequence in which SendPacket followed by Trans-
mitPacket with a binding losing the data packet occur
infinitely many times immediately after each other. In
this case we will never reach the marking in Fig. 29. If
we want to exclude that kind of behaviour, we would
introduce a counter which limits the number of retrans-
missions allowed for each individual packet.

The liveness properties in Fig. 39 specify that there
is a single dead marking which has the node number

Fig. 39 State space report—liveness properties

4868. A dead marking is a marking in which no binding
elements are enabled. This means that the marking cor-
responding to node 4868 is both a home marking and
a dead marking. The fact that node 4868 is the only
dead marking tells us that the protocol as specified by
the CPN model is partially correct—if execution termi-
nates we have the correct result. Furthermore, because
node 4868 is also a home marking it is always possible
to terminate the protocol with the correct result. It may
be a bit surprising that a dead marking can be a home
marking, but this is possible because any marking can
be reached from itself by means of the trivial occurrence
sequence of length zero.

Figure 39 tells us that there are no live transitions.
A transition is live if from any reachable marking we
can always find an occurrence sequence containing the
transition. In other words, we cannot do things which
will make it impossible for the transition to occur after-
wards. We have already seen that our protocol has a
dead marking, and this is the reason why it cannot have
any live transitions—no transitions can be made enabled
from the dead marking.

Finally, Fig. 39 also tells us that there are no dead
transitions. A transition is dead if there are no reachable
markings in which it is enabled. That there are no dead
transitions means that each transition in the protocol has
the possibility to occur at least once. If a model has dead
transitions then they correspond to parts of the model
that can never be activated. Hence, we can remove
dead transitions from the model without changing the
behaviour of it.

5.4 Query functions

Above, we have discussed the contents of the state space
report (with the exception of the so-called fairness prop-
erties). It is produced totally automatically, and it con-
tains information about a number of key properties for
the CPN model under analysis. The behavioural prop-
erties investigated in the state space report are stan-
dard properties that can be investigated for any model.
Hence, the state space report is often the first thing which
the user asks for. However, the user may also want to
investigate properties that are not general enough to be
part of the state space report. For this purpose a number
of predefined query functions are available in CPN Tools
that make it possible to write user-defined and model-
dependent queries. These queries are written in the CPN
ML programming language. The CPN state space tool
uses the predefined query functions when computing the
content of the state space report. CPN Tools addition-
ally contains a library that makes it possible to formulate
queries in a temporal logic [8].
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An example of a model-specific query for the CPN
model in Fig. 32 would be to check whether the pro-
tocol obeys the stop-and-wait strategy, i.e., whether the
sequence number of the data packet currently being sent
by the sender is at most one less than the sequence num-
ber expected by the receiver. For this purpose we can
implement a predicate StopWait which given a mark-
ing, i.e., a node from the state space, checks whether the
difference between the sequence number in the receiver
side (represented by the token on place NextRec) and
the sequence number in the sender side (represented by
the token on place NextSend) is at most one. The imple-
mentation of the StopWait predicate is as follows:

fun StopWait (n:Node) =

let

val Sender_Seq =

ms_to_col (Mark.Protocol’NextSend 1 n);

val Receiver_Seq =

ms_to_col (Mark.Protocol’NextRec 1 n);

in

(Receiver_Seq - Sender_Seq) <= 1

end;

The function extracts the colours of the tokens on the
places NextSend and NextRec in the current marking
given by the parameter n which is a Node in the state
space. It then compares the value of the two sequence
numbers as described above. The StopWait predicate
can then be provided to the query function PredAll-
Nodes which lists all nodes in the state space satisfying
a given predicate. Surprisingly, not all nodes satisfy the
predicate. The reason for this is that acknowledgements
may overtake each other on the places C and D which
means that it is possible for the sender to receive an
old acknowledgement that causes the sender to dec-
rement its sequence number. Using the query functions
ArcsInPath provided by CPN Tools it is easy to obtain
a counter example, i.e., an occurrence sequence lead-
ing from the initial marking to a marking where the
predicate does not hold and have it visualised using the
drawing facilities of CPN Tools.

One of the main advantages of state space methods is
that they are relatively easy to use, and they have a high
degree of automation. The ease of use is primarily due
to the fact that with state space methods it is possible
to hide a large portion of the underlying complex math-
ematics from the user. This means that quite often the
user is only required to formulate the property which
is to be verified and then apply a computer tool. The
main disadvantage of state spaces is the state explosion
problem [38]: even relatively small systems may have an
astronomical or even infinite number of reachable states,
and this is a serious problem for the use of state space

methods for the verification of real-life systems. CPN
Tools includes a collection of reduction techniques for
alleviating the state explosion problem inherent in state
space-based verification. These advanced state space
techniques typically represent the state space in a com-
pact form or represent only parts of the state space. The
state space reduction is done in such a way that it is
still possible to verify properties of the system. A dis-
cussion of these reduction methods is, however, beyond
the scope of this paper, for details see, e.g., [9,18,25,26].

The state space of a timed CPN model is defined in
a similar way as for untimed CPN models, except that
each state space node now corresponds to a timed mark-
ing, i.e., the timed multi-sets specifying the markings of
the places and the value of the global clock. CPN Tools
also supports state space analysis of timed CPN models.

6 Performance analysis

Simulation-based performance analysis is supported via
automatic simulation combined with data collection.
The basic idea of simulation-based performance anal-
ysis is to conduct a number of lengthy simulations of
the model during which data about the performance
of the system is collected. The data typically provides
information such as the size of queues, delay of packets,
and load on various components. The collection of data
is based on the concept of data collector monitors that
allow the user to specify when and what data is to be col-
lected during the individual steps of a series of automatic
simulations. The data can be written in log files for post-
processing, e.g., in spreadsheets, or a performance report
can be saved summarising key figures for the collected
data such as average, standard deviation, and confidence
intervals. Simulation-based performance analysis typ-
ically uses batch simulation that makes it possible to
explore the parameter space of the model and conduct
multiple simulations of each parameter configuration to
obtain results that are statistically reliable. We illustrate
performance analysis using a timed model of the simple
protocol.

6.1 Revised model for performance analysis

We will develop a slightly modified version of our
protocol model to be used for performance analysis.
This model contains a module for the arrival of the data
packets to be sent by the sender and a module for the
protocol. These two modules are shown in Figs. 41 and
42, and they are tied together via the System module
shown in Fig. 40.
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Fig. 40 System module—top-level module for the hierarchical,
timed protocol model

Let us first consider the data packets that the sender
must send. When analysing the performance of a system,
one is often interested in measuring the performance of
a system when it processes a particular kind of workload.
For example, the workload for the timed protocol is data
packets. With CPN models it is possible to use both fixed
workloads, i.e., workloads that are predetermined at the
start of a simulation, and dynamic workloads.

In previous sections, the initial marking inscription
of the place PacketsToSend has been used to deter-
mine exactly which data packets should be sent. When
debugging the model or when examining the logical cor-
rectness of the protocol via state space analysis, it is suffi-
cient to examine the behaviour of the model for a limited
number of data packets. However, it is unlikely that such
a protocol would be used to send a small, fixed number
of data packets that are always available in a buffer. If
data packets arrive much faster than they can be sent and
acknowledged, then a large queue of data packets will
grow at the sender, and an unacceptably large amount
of time may pass from when a packet arrives until it is
acknowledged. The arrival of data packets will affect the
performance of the protocol, and this behaviour should,
therefore, be modelled accurately. For this system, it is
useful to consider a dynamic workload.

The arrival of data packets is modelled in the Arriv-
als module shown in Fig. 41. A single timed token on
the place Next is used to control the arrival of new data
packets. The colour of the token represents the sequence
number of the next data packet that will arrive, and
the time stamp determines when a new data packet
will arrive. In the marking shown in Fig. 41, the next
data packet will arrive at time 3161, and it will get the
sequence number 16. When the CreatePacket transi-
tion occurs, the time delay of the token that is added
to the place Next is determined by the nextArrival
function defined as:

fun nextArrival() = discrete(200,220);

Intuitively, the value returned by the nextArrival
function represents the amount of time that will pass
before the next data packet arrives. Here the discrete
probability distribution function is used, but CPN Tools
provides support for a number of probability distribu-
tions, including, uniform, normal, Erlang, and exponen-
tial.

n+1@+nextArrival()n

newDataPacket(n)Create
Packet

Next

1`1

NO

Packets
To Send

Out

DATAPACKET

Out

1 1`16@3161

3

1`(13,"p13 ",2513)@3065+++
1`(14,"p14 ",2724)@2724+++
1`(15,"p15 ",2943)@2943

Fig. 41 Module for the arrival of data packets

When doing performance analysis, it is often interest-
ing to measure the amount of time that passes between
different events. In the timed protocol example, it is
interesting to measure the amount of time that passes
from when a data packet arrives at the sender until the
data packet is received by the receiver. To be able to
do this it must be possible to record and remember the
time at which the first event occurs. In a CPN model,
the easiest way to record this kind of information is to
include it in token values. The colour set DATAPACKET
shown below is used to model the data packets. Here
the token colour of a data packet is a triple consisting of
a sequence number, the data contents, and the time of
arrival for the data packet. The time of arrival is repre-
sented by the integer colour set TOA.

colset TOA = int;
var t : TOA;
colset DATAPACKET = product NO*DATA*TOA

timed;

When the CreatePacket transition occurs, a new data
packet is created by the newDataPacket function (not
shown) which returns a value of type DATAPACKET, i.e.,
a triple. The sequence number of the new data packet
is determined by the argument n, shown in Fig. 41, and
the time of arrival of the data packet will be equal to the
model time at which the transition occurs.

Figure 42 shows a variant of the timed protocol that
differs from the timed model in Fig. 14 in a number of
ways. In Fig. 42, data packets are discarded after they
have been acknowledged. Transition RemovePacket
removes data packets from the place PacketsToSend
after they have been acknowledged. The inscription to
the upper left of the transition, i.e., the inscription
[n<k], is the guard for the transition. This guard ensures
that only packets that have a sequence number that is
smaller than the sequence number on NextSend will
be removed from place PacketsToSend. A time delay
inscription on the arc from PacketsToSend to Remove-
Packet allows tokens to be removed ahead of time from
the place PacketsToSend. The arc inscription on the arc
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Fig. 42 Module for the protocol

from ReceiveAck to NextSend has also been changed
so that the sequence number on NextSend will never be
decreased. This means that the sender will not
retransmit packets that have already been received if
a duplicate acknowledgement is received.

The loss of data packets is also represented slightly
differently. For automatic simulations of the model
shown in Fig. 14, the variable success for the transi-
tion TransmitPacket would be randomly bound to either
trueorfalse each time the transition occurs, and both
values would be equally likely. In other words, approx-
imately 50% of the data packets would be lost during
automatic simulations. Many networks are more reli-
able than this, so when studying the performance of
the protocol, it is important to represent the loss rate
more accurately. In Fig. 42 the ok function determines
whether a packet will be transmitted successfully or lost:

fun ok() = uniform(0.0,1.0) <= 0.9;

The uniform function will return a random value
between 0.0 and 1.0, and all values in the interval have
the same probability of being chosen. The ok function
specifies that there is a 90% chance that data packets will
be transmitted successfully. The loss of acknowledge-
ments is modelled in a similar manner. Since fewer pack-
ets will be lost, it is not necessary to retransmit packets as
often. Therefore, the value of the constant Wait, which
determines how long the sender should wait before
retransmitting a data packet, has been changed to 175.

6.2 Performance measures and data collectors

There are a number of interesting performance mea-
sures for the timed protocol example. For example, it
could be interesting to know how many data packets or
how many duplicate data packets are received by the

receiver during a simulation. Measuring the number of
packets to send will indicate whether there is a backlog
of data packets at the sender. In this example, packet
delay will be the amount of time that passes from when
a data packet arrives at the sender until it is correctly
received by the receiver. Calculating average and max-
imum packet delay will indicate whether data packets
are received in a timely fashion.

Such performance measures can be calculated based
on numerical data that is extracted or collected from
a CPN model during simulations. In CPN Tools, data
collector monitors are used for this purpose. As we
shall see, the numerical data can be extracted from the
binding elements that occur and the markings that are
reached during a simulation. Different kinds of data col-
lector monitors can be used for different purposes. There
are standard or predefined data collector monitors that
can be used for any CPN model. We will also see exam-
ples of user-defined or generic data collector monitors
which collect data that is model specific. Data collector
monitors are created with tools from the Monitoring pal-
ette, and they can be created by cloning and modifying
existing data collector monitors.

Calculating the number of data packets that are
received by the receiver is simply a matter of count-
ing the number of times the ReceivePacket transition
occurs during a simulation. In CPN Tools a count
transition occurrences monitor is a standard monitor for
just this purpose. The monitor for counting the number
of received data packets is named ReceivedPackets.

In the model, a duplicate data packet is received
when the ReceivePacket transition occurs with a bind-
ing where n�=k. Generic data collector monitors can be
used to collect any kind of numerical data from a CPN
model. The behaviour of such monitors is determined
by their monitoring functions which are accessible to the
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user. Here we will use a generic data collector monitor
to calculate the number of duplicate packets received by
counting the number of times a transition occurs with a
particular binding. The monitor is named ReceivedDupli-

catePackets.
So, we need to be able to determine at least two things

for the ReceivedDuplicatePackets monitor: (1) when data
should be collected from the model for updating the
counter of duplicate data packets, and (2) the value with
which the counter should be increased. This function-
ality is determined by the monitoring functions for the
data collector monitor.

In a data collector monitor, a predicate function will be
called periodically, and it should return true whenever
the monitor should collect data from the model. The
predicate function for the ReceivedDuplicatePackets mon-
itor looks like this:

fun pred (Protocol’Receive_Packet
(1,{d,data,k,n,t})) = true

The predicate function can examine the bindings of
the variables of the transition, but it is defined so that
it ignores the bindings of the variables. The function
returns true every time ReceivePacket occurs.

In a data collector monitor, an observation function
collects numerical data from the model. An observation
function is called each time the predicate function for
the same monitor is called and returns true. The fol-
lowing observation function collects data that is used to
calculate the number of duplicate data packets received:

fun obs (Protocol’Receive_Packet
(1, {d,data,k,n,t})) =

if n=k then 0 else 1

The predicate function above determines that this obser-
vation function will be called each time ReceivePacket
occurs. The function will return 1 whenever a duplicate
data packet is received by the receiver, and 0 when a
packet is received the first time. The data values that are
returned by the observation function are used to calcu-
late statistics, such as the sum, average, and maximum
of the data values that are collected. The sum of the
data values collected by this monitor will indicate how
many duplicate data packets have been received during
a simulation. The average of the data values will be the
proportion of duplicate data packets to the total number
of data packets received.

Each data collector monitor has two additional mon-
itoring functions: an initialisation function and a stop
function. The initialisation function can be used to col-
lect data from the initial marking of the model. Simi-
larly, the stop function can be used to collect data from
the final marking of a simulation. Initialisation and stop

functions cannot be used to collect data from binding
elements. For the ReceivedDuplicatePackets monitor, nei-
ther the initialisation function nor the stop function is
used to collect data from markings.

We define another generic data collector monitor
called PacketDelay which collects data from occurring
binding elements. It is defined to measure packet delay,
and to calculate average and maximum packet delay.
When the ReceivePacket transition occurs (see Fig. 42),
the variable t is bound to the arrival time of the data
packet that is being received, and this value can be used
to calculate the packet delay. This data collector monitor
is associated only with the ReceivePacket transition.

The predicate function for this monitor is exactly the
same as the one for the ReceivedDuplicatePackets monitor.
The observation function for measuring packet delay
subtracts the time of arrival for the data packet t from
the model time at which the transition occurs, and the
time that is required to receive the data packet (17) is
added, since the time delay for receiving the data packet
ought to be included in the packet delay. The initialisa-
tion and stop functions are not used to collect data from
markings.

We have seen a number of examples of how data col-
lector monitors can be used to collect data from binding
elements that occur during a simulation. We will now
see how monitors can be used to collect data from the
markings that are reached during a simulation.

The number of tokens on the place PacketsToSend
in a particular marking is equal to the number of pack-
ets to be sent. In CPN Tools, a marking size monitor is
a standard monitor that is used to measure the number
of tokens on a place during a simulation. Such a moni-
tor can calculate the average and maximum number of
tokens on a place during a simulation. We will use a
marking size monitor named PacketsToSend for measur-
ing the number of tokens on the place PacketsToSend
during a simulation, and to calculate the average and
maximum number of data packets to be sent during a
simulation.

One way to measure the number of tokens on a place
is to count the number of tokens on the place in the
initial marking and after every step in a simulation. If
the model is not timed, then this is a good way to collect
the data for calculating the average number of tokens
on the place, and a marking size monitor for untimed
models does, in fact, use this technique.

However, for a timed model, it is often desirable to
use timing information when calculating the average
number of tokens on a place. Such timing information
will be taken into consideration if we calculate the time-
average number of packets to send. By time average we
mean a weighted average of the possible number of data
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packets to send (0, 1, 2, …) weighted by the proportion
of time during the simulation that there were that many
data packets to send. When calculating the time average,
it is sufficient to measure the number of tokens at the
place only when one of the transitions surrounding the
place occurs. When the number of tokens is measured,
the interval of model time that passes until the number
of tokens is measured again is used to weight the first
measurement. A marking size monitor for timed models
uses this technique.

We define another generic data collector monitor
called WaitingForTransmission which calculates the time-
average number of data packets and acknowledgements
that are waiting to be transmitted. In other words, it
measures the sum of the number of tokens on places
A and C. Since it calculates the time-average number
of tokens on these two places, it is sufficient to mea-
sure the number of tokens when one of the transitions
connected to either of the places occurs. The monitor
is associated with the following nodes: places A and C,
and transitions SendPacket, TransmitPacket, Receive-
Packet, and TransmitAck. The predicate function will be
called only when one of these transitions occurs, and
the function will return true whenever it is called. The
observation function returns the total number of tokens
on the two places:

fun obs (bindelem,
Protocol’A_1_mark : DATAPACKET tms,
Protocol’C_1_mark : NO tms) =

(size Protocol’A_1_mark) +
(size Protocol’C_1_mark)

The initialisation and stop functions for the WaitingFor-

Transmission monitor are similar to the observation func-
tion of the monitor.

Generic data collector monitors are not required to
collect data regularly during simulations. For the timed
protocol example, we would like to calculate throughput
as the number of unique data packets that were received
by the receiver per second. This can be calculated at the
end of a simulation by dividing the number of unique
packets that are received during the simulation by the
length of the simulation expressed as seconds of model
time. In this model, one second is equal to 1,000,000
units of model time. The stop function for generic data
collector monitor named Throughput is used to calcu-
late throughput. It is also necessary to define predicate,
observation, and initialisation functions for the Through-

put monitor, even though these functions will not be used
to collect data.

6.3 Statistics

Since most simulation models contain random behav-
iour, the simulation output data are also random, and
care must be taken when interpreting and analysing the
output data. Performance measures are estimated by
calculating statistics for the data that is collected by data
collector monitors during a simulation. Below we give
a very brief description of some of the statistical con-
cepts used when conducting performance analysis using
CPN Tools. For a more detailed introduction to statistics
please see a textbook on statistics or simulation, such as
[27] or [3].

Statistics that are calculated relative to a collection
of discrete data values are known as discrete-parameter
statistics [21]. For example, the average packet delay is
defined relative to the collection of discrete observations
Di where Di is the packet delay for the ith data packet
received during a simulation.

As discussed in the previous section, the time-aver-
age number of data packets waiting to be sent is equal to
the time-average number of tokens on place PacketsTo-
Send. This is a different kind of “average” than the aver-
age packet delay, because time-average is taken over
(continuous) time, rather than over data packets (which
are discrete). Time-average is an example of a contin-
uous-time statistic. Intuitively, continuous-time statistics
are those that result from taking the (time) average,
minimum, or maximum of a plot of something dur-
ing the simulation, where the x-axis is continuous time
[21].

A data collector monitor can calculate either the
(regular) average or the time-average. A monitor that
calculates the (regular) average is said to calculate dis-
crete-parameter statistics. A monitor that calculates
time-average is said to calculate continuous-time sta-
tistics. Both kinds of monitors can calculate a number of
different statistics, including: count (number of obser-
vations), minimum, maximum, sum, and average. Each
data collector monitor has predefined functions that can
be used to access the statistics that are calculated for the
monitor, such as count, sum, avrg, and max.

It is important to remember that running different
simulations will result in different estimates of perfor-
mance measures. Confidence intervals are often used
to evaluate the accuracy of performance measure esti-
mates. Accurate confidence intervals can only be
calculated for data values that are independent and iden-
tically distributed (IID). Intuitively, data values are IID
if they are not related to each other, and if they have the
same probability distribution. CPN Tools can calculate
90, 95, and 99% confidence intervals. Figure 43 shows an
example of how the 95% confidence interval for average
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Fig. 43 95% confidence intervals for average packet delay

packet delay generally decreases as more IID estimates
are collected from increasing numbers of simulations.

Since all of the data collected by a single data col-
lector monitor is not likely to be IID, it is necessary
to find other methods for collecting IID estimates of
performance measures. One widely used method is to
collect IID estimates from independent, simulation rep-
lications, which start in the same initial state and stop
when the same stop criterion is fulfilled. For exam-
ple, simulation replications of the timed protocol exam-
ple could all stop after 1,000 data packets have been
received, or after one hour of model time has passed.

The batch-means method is another commonly used
technique for obtaining IID estimates of performance
measures. In this method, IID estimates of performance
measures are derived from data values from a single,
long simulation. The idea behind this method is to group
individual observations into a number of batches, to
calculate the averages of the observations within each
batch, and then to use the averages from each of the
batches as IID estimates of a performance measure.

As we will see in Sect. 6.5, determining whether IID
estimates should be obtained from simulation replica-
tions or via the batch-means method will depend on the
kinds of simulation experiments that are to be done.

6.4 Performance output

Several different kinds of output can be generated for
data collector monitors. In this section, we will see some
examples of performance-related output, including log
files, statistical reports, and scripts for plotting data
values.

All of the data that is collected by a data collector
can be saved in a data collector log file. The log file
also contains information about the steps and model

Fig. 44 Data collector log file for PacketsToSend monitor

times at which the data was collected. An option for
a data collector monitor determines whether a log file
should be generated for the monitor. Figure 44 shows
an example of a log file for the PacketsToSend monitor.
The last line of Fig. 44 shows that there was 1 token
on place PacketsToSend after the 9th simulation step
which occurred at model time 220, and this was the 6th
time that the number of tokens on the place was mea-
sured. The monitor measures the number of tokens on
the place whenever one of the surrounding transitions
occurs. Since the number of tokens on the place does
not change when the SendPacket transition occurs, suc-
cessive data values that are collected by the monitor
may be the same, as can be seen in the first column of
Fig. 44. The last two columns show that more than one
data value may be collected after different simulation
steps that occur at the same model time.

Data collector log files can be post-processed after
a simulation has completed. For example, they can be
imported into a spreadsheet or plotted. CPN Tools gen-
erates scripts for plotting data collector log files with
the gnuplot program [14]. Figure 45 shows an example
of how a log file for the PacketsToSend monitor can be
plotted with gnuplot.

The statistics that are calculated for data collector
monitors are saved in different kinds of reports. A sim-
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Fig. 45 Plotting data for PacketsToSend monitor
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Fig. 46 Statistics from a simulation performance report

ulation performance report contains statistics that are
calculated for the data that is collected by data collec-
tors during one simulation. Figure 46 shows statistics
from a simulation performance report. The simulation
stopped after 1,000 data packets had been received by
the receiver. In addition to statistics, the report contains
information (not shown in Fig. 46) indicating that the
simulation stopped at model time 188,775 after the exe-
cution of 6,916 simulation steps.

The upper part of Fig. 46 shows the continuous-time
statistics from the simulation performance report. There
are five columns with different kinds of statistics. The
user can determine which statistics should be included
in a simulation performance report. The statistics for the
PacketsToSend monitor show that the time-average num-
ber of data packets to send was 1.57, and that the max-
imum number of data packets to send was 7. The count
statistic for the monitor shows that it collected 2,911 data
values, i.e., it measured the number of tokens on place
PacketsToSend 2,911 times. The first time the monitor
measured the number of tokens was at model time 0.
The time average for the WaitingForTransmission monitor
shows the time-average number of packets waiting to be
transmitted, i.e., the time-average number of tokens on
places A and C, was 0.14.

The lower part of Fig. 46 shows the discrete-param-
eter statistics from the simulation performance report.
The count statistic for the PacketDelay monitor shows
that the monitor measured the packet delay for 1,000
data packets. The average packet delay is 273.26 units
of time, with a minimum and maximum packet delay
of 51 and 1,275, respectively. Note that not all statis-
tics in a simulation report will be useful, for example
the average, minimum, and maximum values for the
ReceivedPackets monitor are not interesting, and the sum
and count statistics show the same value, namely the
number of packets that were received during the
simulation. The statistics for the ReceivedDuplicatePac-

kets monitor indicate that 102 out of 1,000 received pack-
ets were duplicates. Finally, the throughput for the sim-
ulation was 4,756.99 (unique) data packets per 1,000,000
time units, i.e., per second. Recall that the throughput

is calculated by a monitor stop function at the end of a
simulation, and this explains why the count statistic for
the monitor is 1, and why the sum, average, minimum
and maximum values for the monitor are the same.

The statistics in a simulation performance report are
unreliable, because they are just one estimate of var-
ious different performance measures. Different statis-
tics would be obtained if another simulation were run.
A reliable estimate of a performance measure can be
obtained by calculating a confidence interval for the
average of a set of IID estimates for the performance
measures. For example, IID estimates of the average
packet delay can be obtained by running a number of
independent simulation replications in CPN Tools. Such
IID estimates can also be saved in log files. Figure 47
shows IID estimates from ten simulation replications
for average packet delay for 1,000 packets. This data
can then be used to calculate a confidence interval for a
reliable estimate of average packet delay for the timed
protocol example.

Another performance report contains reliable esti-
mates of performance measures based on IID data val-
ues. Figure 48 shows an excerpt of such a performance
report. The statistics shown in the figure are calculated
for IID estimates of performance measures that were
collected from ten simulation replications. A value in
the 95% Half Width column is equal to half of the length
of the 95% confidence interval for the average in the
same row. For example, the data from Fig. 47 were used
to calculate the statistics in the avrg_iid row under the
PacketDelay heading, and the 95% confidence interval

Fig. 47 Log file with IID estimates of average packet delay

Fig. 48 Reliable statistics based on data from ten replications
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for the average packet delay based on the data from
the ten simulations is 240.01±25.32. A value in the Min
(Max) column is the minimum (maximum) of the IID
estimates that were collected for the performance mea-
sure in the first column of the same row. For example,
the minimum average packet delay from the ten rep-
lications is 203.79, while the maximum average packet
delay is 311.17. Some, but rarely all, of the statistics
shown in this performance report will represent useful
performance measures for the model.

6.5 Conducting simulation experiments

Performance analysis studies are conducted for differ-
ent reasons, e.g., to evaluate existing or planned sys-
tems, to compare alternative configurations, or to find an
optimal configuration of a system. Experimental design
[27] is concerned with determining which scenarios are
going to be simulated and how each of the scenarios will
be simulated in a simulation study. When deciding how
many simulations to run and how long to run each sim-
ulation for a scenario, it is necessary to consider what
kind of system is being modelled and what the purpose
of the simulation study is. There are two kinds of sys-
tems, terminating systems and non-terminating systems,
which will be described below. As we shall see, different
statistical techniques are used to analyse these different
kinds of systems.

Terminating systems are characterised by having a
fixed starting condition and a naturally occurring event
that marks the end of the system. An example of a termi-
nating system is a business day at a bank that starts at 10
a.m. and ends at 4 p.m. The purpose of simulating termi-
nating systems is to understand their behaviour during
a certain period of time, and this is also referred to as
studying the transient behaviour of the system.

Terminating simulations are used to simulate termi-
nating systems. The length of a terminating simulation
is determined either by the system itself, if the system
is a terminating system, or by the objective of a simu-
lation study. The length of a terminating simulation can
be determined by a fixed amount of time, e.g., 6 h, or it
can be determined by some condition, e.g., the depar-
ture of the tenth customer. Simulation replications are
generally used to collect IID estimates of performance
measures for terminating simulations.

In a non-terminating system, the duration of the
system is not finite. The Internet exemplifies a non-
terminating system. Non-terminating simulations are
used to simulate non-terminating systems. In a non-
terminating simulation, there is no event to signal the
end of a simulation, and such simulations are typically
used to investigate the long-term behaviour of a system.

Non-terminating simulations must, of course, stop at
some point, and it is a non-trivial problem to determine
the proper duration of a non-terminating simulation.

If the behaviour of a non-terminating system becomes
fairly stable at some point, then there are simple tech-
niques for analysing the steady-state behaviour of the
system using non-terminating simulations. Determining
when, or if, a model reaches a steady state is also a com-
plicated issue. IID estimates of performance measures
for steady-state simulations are often obtained by apply-
ing the batch-means method during a long simulation.

It is often useful to be able to define a warmup period
in which data should not be collected at the beginning
of a simulation. When analysing steady-state behaviour
using non-terminating simulations, the warmup period
is used to ignore the behaviour of the model during the
time it takes the model to reach a steady state. It can
also be useful to define a warmup period for terminat-
ing simulations.

6.6 Model parameters and comparing configurations

Simulation-based performance analysis is often used to
compare different scenarios or configurations of a sys-
tem. The performance of a system is often dependent
on several parameters. For example, the performance of
the timed protocol example is influenced by parameters
that determine the probability that packets will be trans-
mitted successfully, the minimum and maximum times
between arrivals of data packets, and even the distribu-
tion of the interarrival times of data packets. Changing
these parameters will most likely affect the performance
measures of the model. In the original version of the
model, these parameters were hardcoded into functions,
such as the ok function:

fun ok() = uniform(0.0,1.0) <= 0.9;

The probability that a packet will be transmitted suc-
cessfully is 90%, as determined by the 0.9 in the ok
function. This parameter can be changed by modifying
the declaration of the ok function. In CPN Tools, these
changes require the syntax of the declaration and the
parts of the model that depend on the declaration to be
rechecked. Making such changes can therefore be time
consuming, especially if many parts of a large model
must be rechecked. If parameters are defined in this
way, then it is not possible to automatically simulate a
number of configurations without manual interaction by
a user.

These problems can be avoided if parameters are
declared as reference variables. It is possible to change
the value of a parameter declared as a reference vari-
able without having to recheck the syntax of any part of
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Fig. 49 Using the Evaluate ML tool to change a parameter value

a model. Here is the declaration of a reference variable
that determines the probability that a packet is trans-
mitted successfully, and the ok function that uses the
reference variable:

globref successrate = 0.9;
fun ok() =

uniform(0.0,1.0) <= !successrate;

The keyword globref indicates that a global reference
variable is being declared, i.e., the reference variable can
be accessed from any part of the CP-net. The name of
the reference variable is successrate, and the initial
contents of the reference variable is 0.9. The ! opera-
tor is used to access the contents of a reference variable.
Figure 49 shows how the value of successrate could
be changed to 0.75 by picking up the Evaluate ML tool
from the simulation tool palette (shown in Fig. 28) and
applying the tool to an auxiliary text. The value of a
parameter could also be changed in a function. If model
parameters are declared as reference variables, then it is
very easy to change the values of the parameters and to
automatically simulate different model configurations.

If the scenarios of a simulation study are not pre-
determined, then the purpose of the study may be to
locate the parameters that have the most impact on a
particular performance measure or to locate important
parameters in the system. Sensitivity analysis [22] inves-
tigates how large changes in parameters affect perfor-
mance measures. Gradient estimation [27] examines how
small changes in numerical parameters affect the per-
formance of the system. Optimisation [2] is often just a
sophisticated form of comparing alternative configura-
tions, in that it is a systematic method for trying different
combinations of parameters in the hope of finding the
combination that gives the best results.

7 Visualisation

Even though the CPN modelling language supports
abstraction and a module concept, there can, in many
cases, be an overwhelming amount of detail in the
constructed CPN model. Furthermore, observing every

single step in a simulation is often too detailed for inves-
tigating the behaviour of a model, especially for large
CPN models. This level of detail can be a limitation, in
particular when presenting and discussing a CPN model
with colleagues unfamiliar with the CPN modelling lan-
guage. The idea of animation graphics and visualisation
is to add high-level graphics to CPN models. This means
that feedback from simulations can be obtained at a
more adequate level of detail using application domain
concepts, and in such a way that the underlying formal
CPN model is fully transparent to the observer.

CPN Tools can interact with the BRITNeY Suite ani-
mation tool [40] that supports the creation of domain-
specific graphics on top of CPN models. The animation
tool supports a wide range of diagram types via an ani-
mation plug-in architecture. Below we give two exam-
ples of how the animation tool can be used to create
domain-specific graphics. One example is the use of mes-
sage sequence charts (MSCs) to illustrate the exchange
of messages in the simple protocol. The second example
illustrates how it is possible to provide input and con-
trol a simulation of a CPN model by interacting with
system-specific graphics. We use the CPN model previ-
ously shown in Fig. 1 as a basis for both examples.

7.1 Message sequence charts

Figure 50 shows an example of an MSC created during a
simulation of the CPN model of the simple protocol. The
MSC has four columns. The leftmost column represents
the sender and the rightmost column represents the
receiver. The two middle columns represent the sender
and receiver side of the network. The MSC captures a
scenario where the first data packet sent by the sender
is lost which then causes a retransmission of the data
packet to occur. The retransmitted data packet is then
successfully transmitted to the receiver and the corre-

Fig. 50 Example of a message sequence chart
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sponding acknowledgement is successfully received by
the sender.

The graphical feedback from the execution of the
CPN model is achieved by attaching code segments to
the transitions in the CPN model. A code segment con-
sists of a piece of sequential CPN ML code that is exe-
cuted whenever the corresponding transition occurs in
the simulation of the CPN model. As an example, the
transition SendPacket has the following code segment
attached:

input (n,d);
output ();
action
msc.addEvent ("Sender","Network 1",

NOxDATA.mkstr
(n,d))

The code segment is provided with the value bound
to the variables n and d via the input part of the code
segment. The code segment then uses the function
msc.addEvent provided by the animation tool to cre-
ate an event from the Sender column to the Network1
column labelled with the value bound to n and d. The
functionNOxDATA.mkstr converts the pair(n,d) into
a corresponding string used to label the arc of the MSC.
The output part of the code segment is not used in this
code segment, but its use will be illustrated in the next
subsection. The other transitions of the CPN model have
similar code segments. Each code segment essentially
consists of invoking the appropriate primitive in the ani-
mation tool. An alternative to using code segments is to
use a user-defined monitor to invoke the appropriate
primitive depending on which transition occurs. For fur-
ther details regarding user-defined monitors we refer
to [10].

7.2 Interaction graphics

Figure 51 shows an example of a system-specific anima-
tion graphic created using an animation plug-in based
on the SceneBeans framework [35]. The graphic illus-
trates the system modelled by the CPN model of the
simple protocol. The computer to the left represents
the sender, the computer to the right represents the
receiver. The cloud in the middle represents the net-
work. When a simulation is started, a modal dialog pops
up that allows the observer to enter the text string to be
transmitted from the sender to the receiver. In this case
it was the text string "Coloured Petri Nets" that
was entered. The modal dialog is created by adding a
transition Init connected to the PacketsToSend as shown
in Fig. 52. The Init transition is the only enabled transi-
tion in the initial marking, and when it occurs it removes

Fig. 51 Example of system-specific animation graphics

CreatePackets(data)

()

Init

input ();
output (data);
action
setupVisualization()

Init

()

UNIT

Packets
To Send

NOxDATA

1 1`()

Fig. 52 Transition Init and surroundings

the token with colour () from place Init, executes the
attached code segment, and creates data packets on the
place PacketsToSend according to the string entered by
the user in the modal dialog. The function setupVisu-
alisation (not shown) in the code segment of the Init
transition invokes the primitive in the animation tool
for creating a modal dialog box and returns the string
entered. The string entered will be bound to the variable
data used in the output part of the code segment. The
string bound to data is then used as the argument for
the function CreatePackets which splits the string
into corresponding data packets.

The text on top of the sender computer shows the text
string to be transmitted and is hence a representation of
the marking of place PacketsToSend. Similarly, the text
on top of the receiver computer shows the text string
received by the receiver and is hence a representation
of the marking of place DataReceived. The two counters
on top of the sender and the receiver are representations
of the values of the tokens on places NextSend and Next-
Rec, respectively. The four numbers at the edges of the
network cloud represent the number of tokens on the
network places A, B, C, and D. In the topmost part of
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the network a data packet (1,"Col") is shown which
is currently in transit on the network. The two square
boxes in the middle below the data packet (and coloured
green and red) let the user decide whether the packet
is to be lost (if the user clicks on the red square) or
successfully transmitted (if the user clicks on the green
square). This illustrates how it is possible to provide
input to an ongoing simulation via the animation graph-
ics. The interaction graphics shown in Fig. 51 is created
in a similar way as the MSCs above by attaching code
segments invoking the animation primitives to the tran-
sitions of the CPN model. The only difference is that the
code segments now invoke primitives from a different
animation plug-in. Furthermore, the interaction graph-
ics has an XML scene file that describes the different
elements in the animation, i.e., the computers, the net-
work cloud, the labels, and the buttons. Further details
on the animation tool can be found in [7,40].

8 Conclusion

To cope with the complexity of modern concurrent sys-
tems, it is crucial to provide methods that enable debug-
ging and testing of central parts of the system designs
prior to implementation and deployment. One way to
approach the challenge of developing concurrent sys-
tems is to build an executable model of the system.
Constructing a model and simulating it usually lead to
significant new insights into the design and operation
of the system considered and often results in a simpler
and more streamlined design. Furthermore, construct-
ing an executable model usually leads to a more com-
plete specification of the design and makes it possible
to make a systematic investigation of scenarios which
can significantly decrease the number of design errors.
The construction of a model of the system design typ-
ically means that more effort is spent in early phases
of system development, i.e., requirements engineering,
design, and specification. This additional investment is,
in most cases, justified by the additional insight into
the properties of the system that can be gained prior
to implementation. Furthermore, many design prob-
lems and errors can be discovered and resolved in the
requirements and design phase rather than in the imple-
mentation, test, and deployment phases. Finally, mod-
els are, in most cases, simpler and more complete than
traditional design documents which means that the con-
struction and exploration of the model has resulted in
a more solid foundation for doing the implementation.
This may in turn shorten the implementation and test
phases significantly and decrease the number of flaws in
the final system.

The development of CP-nets has been driven by the
desire to develop an industrial-strength modelling lan-
guage—at the same time theoretically well-founded and
versatile enough to be used in practice for systems of
the size and complexity found in typical industrial pro-
jects. CP-nets are, however, not a modelling language
designed to replace other modelling languages (such as
UML). In our view it should be used as a supplement
to existing modelling languages and methodologies and
can be used together with these or even integrated into
them. High-level Petri Nets is an ISO/IEC standard [4]
and the CPN modelling language and supporting com-
puter tools conform to this standard. The practical appli-
cation of CP-nets typically relies on a combination of
interactive and automatic simulation, visualisation, state
space analysis, and performance analysis. These activi-
ties in conjunction result in a validation of the system
under consideration in the sense that it has been justified
that the system has the desired properties and a high-
degree of confidence and understanding of the system
has been obtained. CPN models can be used to validate
both the functional/logical correctness and the perfor-
mance of a system. This saves a lot of time, because we
do not need to construct two totally independent mod-
els of the system. Instead we can use a single model or
(more often) two models that are very closely related to
each other. There exist a number of modelling languages
that are in widespread use for performance analysis of
systems, e.g., queueing theory. However, most of these
modelling languages cannot be used for modelling and
validation of the logical properties of systems. Some of
these are also unable to cope with performance analysis
of systems which have irregular behaviour.

The paper has given a brief introduction to the CPN
modelling language and the associated analysis meth-
ods. The reader interested in a complete treatment of the
modelling language and analysis methods are referred
to [16,17,19] or the forthcoming book [20]. The web site
associated with [20] contains an extensive set of slides,
exercises, and projects for using CP-nets and CPN Tools
in courses. Further detailed information on the use of
CPN Tools can be found via [10] which contains an elab-
orate set of manuals, tutorials, and other examples of
CPN models. The CPN Tools web site also explains how
to obtain a licence for CPN Tools. Beyond what was pre-
sented in this paper, CPN Tools further includes a collec-
tion of libraries for different purposes. One example is
Comms/CPN [13] for TCP/IP communication between
CPN models and external applications. CPN Tools gen-
erally has an architecture that allows the user to extend
its functionality, such as experimenting with new state
space methods. Hence, in addition to being a tool for
modelling and validation it also provides a prototyping
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environment for researchers interested in experiment-
ing with new analysis algorithms.

We have illustrated the use of CP-nets for modelling
and validation of a simple protocol. Readers interested
in more elaborate industrial use of CPN models and
CPN Tools are referred to [12,19,20,24], the proceed-
ings of the annual CPN workshop [32], and the proceed-
ings of the annual conference on theory and application
of Petri Nets [30].
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