
86 Bell Labs Technical Journal ! Winter 1997

Introduction
In large software projects, the design task is often

divided between systems engineers and developers.
The first part of the design is in the hands of the sys-
tems engineers. They perform feasibility studies, con-
sider how the new design interacts with existing
systems, or system components, and decide on the
main architectural and structural issues. The required
or anticipated behavior of the new software is typi-
cally described in a requirements document, in
English prose.

The architectural issues that must be decided in this
phase include how to apportion new functionality
across existing and new components. Design require-
ments are captured in detailed specifications for each
system component. Often, the systems engineers are
also asked to create validation tests for new system
functionality, and they guide the application of these
tests after the new functionality has been implemented.

Traditionally, the medium of the systems engineer
has been a written requirements document, illustrated
with pictures of sample behaviors. Many of the docu-
mented requirements describe the expected behavior
of a component in response to a particular sequence of
external stimuli. These descriptions are restricted to
the externally visible behavior of components, called
gray box descriptions. The internal realization of each
behavior is deliberately left unspecified.

Because of the limits of informal text, these high-
level descriptions can be both ambiguous and incom-

plete. Capturing complicated branching scenarios
accurately in a written document is a difficult, detailed
task that systems engineers often avoid to keep the
requirements documents manageable. The descrip-
tions that are included are often limited to the so-
called sunny day scenarios, that is, scenarios that
exclude all possibilities for failure or error. The excep-
tions are left as an exercise for the developers who will
have to implement the system in conformance with
the requirements. These exceptions, however, typi-
cally usurp the larger part of the development effort
and ultimately determine the quality and reliability of
the final design.

Although the exceptions could affect both the
overall architecture and the design of individual com-
ponents, they are not dealt with until development is
well under way. None of the requirements documents
normally contain this information. Aspects of the final
implementation that address the exception cases are
often documented only as folklore, or not at all. When
the need arises—for instance, when the design needs
to be enhanced or modified—this knowledge can only
be rediscovered by reading code.

The scant coverage of exceptions in require-
ments documents returns to haunt the systems
engineers at the end of the implementation cycle,
when acceptance testing is conducted. Test cases are
created by manually translating textual require-
ments into test scripts. The resulting set of test cases

♦ Design Tools for Requirements Engineering
Gerard J. Holzmann, Doron A. Peled, and Margaret H. Redberg

Industrial software design projects often begin with a requirements capture and
analysis phase. During this phase, the main architectural and behavioral require-
ments for a new system are collected, documented, and validated. To date, however,
requirements engineers have had few reliable tools to guide and support this work.
We show that a significant portion of the design requirements can be captured in
formalized message sequence charts (MSCs) using a set of tools that we built to reli-
ably create, organize, and analyze such charts.

Bell Labs Technical Journal ! Winter 1997 87

is no more complete than the original set of
requirements. Tests that deal with critical excep-
tion-handling capabilities are absent.

The remainder of this paper describes three tools
that address the need for tool support by systems engi-
neers. These tools—MSC (message sequence charts),
POGA (pictures of graph algorithms), and TEMPLE
(template matcher)—encourage a more nearly com-
plete capture of behavioral requirements, including
exception cases, and provide organization and search
capabilities for a large, complex body of scenario-based
requirements. The tools support design validation
techniques through automated consistency checking
and allow for a straightforward reuse of design
requirements for test case generation.

Designed to operate in a simple, intuitive manner
that requires no extensive training, the tools make
design requirements accessible to all involved in a
design effort, from systems engineers to developers
and testers. The design requirements are stored in
machine- and human-readable, plain-text format that
is amenable to automated design verification tech-
niques and automated indexing and cataloging tools.

A Set of Design Tools
We begin by describing how our tools fit into a

typical requirements specification process.
The purpose of the requirements specification

phase is to determine the intended behavior of a new
system or system component. This work begins with
discussions between systems engineers and key devel-
opers, who together explore the anticipated message
exchanges between components. The goal of these dis-
cussions is to ascertain whether the capabilities and
the behaviors required of each component are consis-

tent and achievable. During these discussions, the
engineers often visualize their work with informal
graphical message flow diagrams and informal archi-
tectural views drawn with boxes and arrows.

MSC,1,2 the first requirements engineering tool
we built, supports the capture of message exchanges as
machine-readable, standardized3 MSCs and conducts
simple, automated consistency checks. The sequence
charts can be annotated with textual requirements;
they can also be symbolically linked to a document to
create a precise association. The link can associate a
message exchanged between system components, the
states of the sending and receiving components, and
the gray box requirement that applies to this
exchange. The MSC tool is described in more detail in
the next section.

MSCs, as standardized by the International
Telecommunications Union (ITU), specify only non-
branching message exchanges. MSC fragments can be
combined in various ways to obtain hierarchical MSCs
that can contain conditional branching and iteration.
A single path through such a hierarchical chart defines
what is sometimes called a use case, or a test case. In a
use case, each path corresponds to a simple concatena-
tion of MSC fragments. Hierarchical MSCs can be
decomposed naturally into finer levels of detail recur-
sively. Our second tool, POGA,2,4 captures and ana-
lyzes hierarchical MSCs. POGA is described in more
detail later in this paper.

A better validation of a library of requirements,
formalized in MSCs, becomes possible if we allow
for the specification of not just positive, but also
negative, test cases. These negative test cases are
message exchanges that are undesirable and that
represent a suspected type of design flaw or system
failure. Experienced designers on a project are a
good source for such negative test cases, and, over
time, a library of negative test cases can be con-
structed for testing in future design cycles. The neg-
ative test case feature can also be used to reliably
determine if specific functionality is present in or
absent from the documented requirements. Our
third tool, called TEMPLE,5 allows the user to
search a POGA database of hierarchical MSCs for
matches of a negative test case, called a template.

Panel 1. Abbreviations, Acronyms, and Terms

FIFO—first-in first-out
ITU—International Telecommunications Union
MSC— message sequence chart
POGA—pictures of graph algorithms
Tcl/Tk—Tool Control Language/Toolkit
TEMPLE—a template matcher that allows the

user to search a POGA database of hierarchi-
cal message sequence charts for matches of a
negative test case

88 Bell Labs Technical Journal ! Winter 1997

The tool is described in more detail in the section
titled “TEMPLE.”

MSC and POGA are relatively lightweight tools
that were implemented in about 4,500 lines of Tcl/Tk
(Tool Control Language/Toolkit) each,6 supported by
small background programs written in about 600 lines
of ANSI standard C. A prototype of the tool TEMPLE
was implemented as a translator that converts tem-
plates and scenarios into input for an existing state
machine-based verifier.7 The translator comprises
about 1,700 lines of C language code.

MSC
Time sequence diagrams appear in almost every

textbook on network or protocol design. They are pop-
ular as visual records of design decisions, and as such
are also frequently included in requirements docu-
ments. Often, however, the visual formalism adopted
varies from one application to the next. If a commer-
cial word processor is used to construct time sequence
diagrams, their semantics are lost altogether, along
with their ability to perform automated consistency
checks. The ITU has proposed a standardized represen-
tation for time sequence diagrams, called MSCs, in its

recommendation Z.120.3 The standard representation
applies to both the graphical elements of an MSC and
its machine-readable form.

Figure 1 shows an example of an MSC chart,
recording the normal flow of events in the setup of a
telephone call.

Vertical lines in the chart correspond to asynchro-
nously executing processes in a logically or physically
distributed system. The arrows represent messages
exchanged between these processes. The tail of each
arrow corresponds to the event of sending a message;
the head corresponds to its receipt. Time advances
from top to bottom; arrows can be drawn either hori-
zontally or sloping downward, but not upward.

Our MSC tool allows the user to construct and
edit ITU-compliant MSCs interactively, in graphical
form, and to store these charts in Z.120 format in the
file system. Requirements text can be inserted directly
in comment or text boxes that become an integral part
of the charts. Alternatively, a text box can contain
symbolic references to the requirements document, for
manual lookups, or they may contain hypertext links
that connect directly to requirements text in commer-
cial word processors.

The MSC tool also integrates a modest amount of
formal verification into the design process in a way
that is almost invisible to the users. The tool contains
an analyzer that can detect logical inconsistencies in
the charts, such as potential race conditions between
message arrivals.1 To enable the user to conduct this
type of verification, the tool contains a choice of possi-
ble semantic interpretations for each chart, as we will
illustrate below. These semantic choices are formally
outside the scope of the ITU definitions, but they can
directly influence the implementation of the require-
ments that are expressed.

Analysis of MSCs
An MSC can be formalized as a fivetuple

, where
• E is a set of events (sends and receives),
• is an event ordering (an acyclic

relation on events),
• is a set of asynchronous processes,
• maps each event to the process in

which it appears, and

User_1

Talking

Switch

Connected

User_2

Talking

Idle

Idle

Off_Hook
Dialtone

Dial_Digits

Answer

On_Hook

Ring_Phone

Off_Hook

Disconnect

On_Hook

Figure 1.
A message sequence chart.

Bell Labs Technical Journal ! Winter 1997 89

• maps each event to its type,

that is, send or receive.

The relation < formalizes the visual ordering of

events, as it is displayed in an MSC. Thus, we have e < f

if e is a send event and f is the corresponding receive,

or when e and f appear within the same process, and e

appears above f in the process line.

We can distinguish between the two types of

ordering that are captured in the relation < as follows.

We can define the relation

to record the ordering

relations between sends and receives alone. Thus, a

message in the chart is formalized as a pair of events,

.

Let , that is, is

the set of all events that belong to process Pi alone. We

define the relation to record the

ordering relations between events within the process

Pi alone.

The relation < is simply the union of all these

orders, that is, .

For example, for the MSC in Figure 2, we have

, ,

, , and

.

The event order < is depicted on the lower left side

of Figure 2. This order is termed “visual,” because it

reflects the way in which the chart is drawn. It may
not, however, properly reflect the way in which the
scenario can be executed, as explained below.

Causal Structures
To facilitate the analysis of an MSC, we can define

a causal structure for any given set of semantic choices
for the underlying system architecture. The semantic
choices are defined in rules that will be discussed
shortly. The causal structure is defined by a fivetuple

, where the only component that
differs here from the definition of an MSC is the rela-
tion . This relation is the enforceable event order of
the MSC, or enforceable order for short.

If , we have e1 < e2, and we know that the
occurrence of event e2 can always be delayed until
after event e1 has terminated. The transitive closure

of is a partial order on events, which may be
called the implied causal order of the chart. Two
events that are unordered by cannot be pre-
vented from occurring independently or concur-
rently by any implementation.

In the MSC of Figure 2, the enforceable order
appears at the lower right of the figure. The distinction
between the visual order and the enforceable order
can reveal logical inconsistencies in an MSC. In
Figure 2, for example, the receive event r1 may not
always precede r2, because the sending processes of

P1

s1

P2

r1

P3

r2 s2

s1: P1

r1: P2

s2: P3

r2: P2

Visual event order

s1: P1

r1: P2

Enforceable event order

s2: P3

r2: P2

Figure 2.
A message sequence chart and two associated event
orders.

S2

S4

S3

S1

S5

S8

S6

S7

s

s

s

s

s

s

d

d

d
d

d

dd

d

Figure 3.
POGA view of a labeled graph, with one of three strongly
connected components shown in blue.

90 Bell Labs Technical Journal ! Winter 1997

the two corresponding messages execute asynchro-
nously. The Z.120 standard has a mechanism that
uses co-region definitions to identify cases in
which event orders are undefined. Such defini-
tions, however, appear to be rarely used in prac-
tice and are often a cause of confusion to
requirements engineers.

An enforceable order is derived from a visual
order using semantic rules.1 For example, one such
semantic rule asserts that always , because a
send event always precedes the corresponding receive
event in any implementation. The arbitrary nature of
the order between r1 and r2 discussed above is
reflected by the absence of a rule that would allow one
to derive from the given conditions

L(e1) = L(e2), T(e1) =T(e2) = r, and e1 < e2.
The specific semantic rules, which are beyond the

scope of the Z.120 standard for MSCs, depend on the
system’s architecture. In a system where each process
has multiple asynchronous communication queues,
one can impose any arbitrary order on independently
received messages, reflecting the order in which the
messages are processed, rather than the order in
which they arrive. In such a system, letting
under the above given conditions can be meaningful.

Semantic Rules for FIFO Queues
A set of semantic rules for an architecture in

which each process has access to precisely one first-in
first-out (FIFO) message queue sets in exactly
the following four cases:
1. A matching pair of send and receive events is

always ordered.

This refers to all pairs of events ordered by the
event relation <c defined earlier.

2. Messages are ordered by the FIFO queuing
discipline.

(For a non-FIFO ordered message queue, this rule
would be deleted.)

3. Two sends within the same process can always
be ordered.

4. A receive and a later send within the same
process can always be ordered.

Detecting Race Conditions
Consider an MSC with visual order < and enforce-

able event order . A pair of events may sometimes
appear in the visual order, but not correspondingly in
the enforceable order. Therefore, the chosen semantics
cannot guarantee that the events will always occur in
the order in which the MSC displays them.

Race Condition: Events e and f from the same
process p are said to be in a race if e < f but not

.
Race conditions do not apply to events that are

enclosed in explicit co-regions, as defined in the Z.120
standard for MSCs.3 Outside co-regions, however, an
event race identifies parts of a system requirement that
cannot be implemented.

The transitive closure of the enforceable
order can be computed with the well-known
Floyd-Warshall algorithm.8 The standard Floyd-
Warshall algorithm has computational complexity
N3, where N is the number of events. For the spe-
cial case considered here, this complexity can be
reduced to N2, using the fact that an initial ordering
of all events is known.1 Because the number of
events in even large MSCs is rarely more than one
thousand, the time or space requirements for this
type of analysis are of no practical significance. The
MSC tool can perform the required checks interac-
tively on even small laptop PCs.

POGA
POGA is a generic graphical tool for constructing

and analyzing directed labeled graphs.4 The tool
includes known algorithms for finding such things as
the shortest paths, strongly connected components,
and roots and leaves. In its prototype version, POGA
relies on the program dot, a standard graph layout tool,
for handling the visual display of graphs.9 Figure 3
shows a small example of a POGA display.

POGA Dependency Graphs
POGA allows for a convenient graphical display of

the dependencies between MSC fragments as they are
formalized and captured with the MSC tool. Figure 4

Bell Labs Technical Journal ! Winter 1997 91

shows such a dependency graph, derived from an
existing graph that was produced in an industrial trial
of MSC and POGA.

The nodes in Figure 4 can represent complicated
scenarios from the distributed system that is being
designed—interaction sequences in which all structural
components of the system can in principle participate.
The first node in Figure 4, labeled msc1, for instance,
represents the first series of steps in a call setup proce-
dure for a telephone call. A subsequent processing step,
msc2, representing, for example, call routing, can have
four different outcomes. The call might have to be
rejected (msc3.3), or it might proceed in various ways,
depending on the specific call features that have been
invoked. By selecting a node in an MSC dependency
graph, the POGA user can request the corresponding
scenario fragment to be displayed with MSC, where it
can be edited and analyzed.

The bold lines in Figure 4 indicate a possible tra-
versal of the dependency graph, from the root to one
of two possible termination points. The graph traversal
identifies one possible composite MSC that can be con-
structed from the fragments msc1…msc5. When the
POGA user selects a series of nodes along a path
through the dependency graph, POGA will construct
the shortest path through those nodes, as illustrated in
Figure 5, and can concatenate the scenario fragments
along this path and pass the concatenation to the MSC
tool for a more detailed analysis.

The scenarios that are handled by MSC and POGA
are deliberately defined at a high level of abstraction,
that is, defining only gray box components. MSC and
POGA describe the allowable, or required, sequence of
events at the external interface to the system under
design, but not the internal details of an implementa-
tion. Once more is known about the design, these

msc1

msc2

msc3.2

msc4.2

msc3.1

msc4.1

msc3.3

msc4.3

msc5

Figure 4.
Interdependencies of scenario fragments.

a

S3

S16b S15b

S4

S15c S16c

S5

S15d

S6

S15e

S7

S16e

S8

S9

S10

S11 S12

S14 S16a S15a

S2

S1

S13

S16d

c

e

d

a b
bacd

e e

e e

b c a

d b ac

e e

b a cd

e e

d c b

ad c b

ad c b

e e

d

Figure 5.
A path through a POGA dependency graph.

92 Bell Labs Technical Journal ! Winter 1997

high-level scenarios can be reused and linked to the
more detailed descriptions provided by developers,
which show precisely how the elements of a design
implement the required behaviors.

A set of longer MSCs constructed from the many
possible paths can also serve as a test case suite or as
an input specification to generate a test harness in
commercial tools that import standardized MSCs.

TEMPLE
The tools MSC and POGA help create, debug,

organize, and maintain MSCs and related text require-
ments. TEMPLE5 adds to these tools the ability to
search an MSC, or a library of MSCs grouped in POGA
graphs, for fragments or paths that match a sample
behavior, also specified as an MSC.

The specification MSC is called a template and
denotes a set of events (sending and receiving of mes-
sages) and their relative order. A specification matches
any MSC fragment or path that contains at least those
events that appear in the template, while preserving
the order between them. Thus, a specification can also
be regarded as an incomplete or skeletal MSC, which
allows additional events besides those specified. The
template is constructed using the MSC tool, and the
TEMPLE tool allows the user to specify appropriate
queue semantics, and with an algorithm, to search a
set of MSCs for a match with a template specification.
When the search concludes, TEMPLE reports the
results to the user.

Template matching can serve various purposes.
Specifications based on MSCs may include thou-
sands of scenario fragments organized in POGA
graphs. Searching these scenario libraries for the
occurrence of specific features can be difficult.
Template matching mechanizes such searches using
the following techniques:

• Debugging—Determining whether a bad MSC
(sometimes referred to as a negative test case),
with an unwanted sequence of message
exchange, exists in the system. Libraries of neg-
ative test cases can be constructed and accumu-
lated over time to preserve this knowledge,
which is acquired through trial and error.

• Determining use and context of use—Finding

charts that contain a specific exchange of
messages to determine the frequency of and
the context (that is, the scenarios) in which
the exchange occurs.

• Existence checking—Determining whether a
required feature is already included or remains
to be added.

Figure 6 shows an example of a template and a
matching MSC scenario. In both charts, there are
three processes, P1, P2, and P3 (although the template
may also contain fewer processes). We will assume
single FIFO-queue semantics. The events in a tem-
plate and a scenario are said to match if they agree
on both the type (send or receive) and process;
moreover, the order among them must be preserved.
In Figure 6, for example, event s1 agrees with and

on both the type and process, while r1 agrees with
and . However, to agree on the enforceable

order, the event that matches s1 must immediately
precede the event that matches r1. This limits the
match to pair s1 with , and r1 with . Similarly, s2

is paired with , and r2 with . One can also label
messages and allow only messages with the same
label to be matched.

The scenario may contain additional order,
which is not reflected in the template. Selecting the
single FIFO-queue semantics, the events r1 and r2 of
the template are unordered (in fact, we could depict
the template in such a way that r1 appears above r2

in the process line of P2 and obtain the same matching
results). In the MSC scenario of Figure 6, and ,
which match the template events r2 and r1, respec-
tively, are not directly ordered. However, they are
causally ordered, as inferred from the chain

P1

s1

P2

r1

P3

r2 s2

Template

P1

2

P2 P3

MSC scenario

ρ
σ

3
σ

4

1ρ
σ

2

3ρ

4ρ

σ
1

Figure 6.
A template and a matching scenario.

Bell Labs Technical Journal ! Winter 1997 93

, where is
the enforceable order from the MSC. Thus, the tem-
plate is interpreted as reflecting only a subset of the
events, and a subset of the order among them; addi-
tional inferred causal order can be imposed by
causal chains that include events that do not appear
in the template.

We will formalize the template matching and
briefly explain the matching algorithm. A more
detailed description can be found in Levin and Peled.5

A template and an MSC have the same
representation, and both can be translated into
causal structures. Consider a causal structure

for a template and a
causal structure for an
MSC, where the template processes are included
in the set of MSC processes . Then a match
between M and N exists when there is a mapping

of the template events to the MSC
events, called the matching function, such that:
1. For each , , that is,

matching events belong to the same process.
2. For each , , that is,

matching events agree on the type of event.
3. If , then , that is, match-

ing pairs of events preserve the enforceable order.

The Matching Algorithm
To describe the matching algorithm, we must

define some notions from partial-order theory. Given
a partial order relation (that is, a transitive, reflex-
ive, and asymmetric relation), with , a
slice S is a subset of E such that if and ,
then .

For S to qualify as a proper slice of partial order ,
any event ordered before some event f within slice S
must also be part of S. Next, we define a border ele-
ment e of slice S to be any event for which there exists
an f in E \ S (that is, in E and not in S) such that ,
and for no , . In other words, every
border element of S must have an immediate succes-
sor in partial order that is outside S. Slices of E are
ordered by inclusion, namely, S2 is a successor of S1,
denoted , exactly when S2 contains one ele-
ment more than S1.

Our algorithm defines a slice SM of a template M,
with respect to a partial order that is the transitive clo-
sure of . It also defines a slice SN of an MSC N, with
respect to a partial order that is the transitive closure of

(and are not necessarily partial orders
themselves). The algorithm matches each border ele-
ment of SM with a border element of SN. Denote this by
match (SM, SN). The matching algorithm checks when
successors of matched slices also match; namely, when

, (or , as the
template may contain fewer events, hence there may
be fewer template slices), and , check
whether .

Such a check is easily obtained from the descrip-
tion of the match and the notion of slices; we only
need to guarantee that a newly matched pair of events
from EM and EN agree on the order relations and

with already matched pairs of border events.
The notion of slices and the matching between

border events allows us to translate the problem to
match two causal structures into a set of transition
rules between global states. In this case, a “global state”
corresponds to the border events of a pair of template
and MSC slices and the matching between them. The
main advantage of this translation is that efficient
existing tools can be used for manipulating transition
systems. The template matching algorithm is imple-
mented by a translation of the template and MSC to
be matched into COSPAN7 finite state machines.

Conclusions
MSC, POGA, and TEMPLE are tools that can sup-

port and encourage a more rigorous capture, analysis,
and documentation of the temporal requirements that
define a new design. All these tools work with stan-
dardized MSCs and can be annotated with textual
requirements or symbolically linked to requirements
in a document. The MSC analysis also includes checks
(not discussed here) on the consistency of timing
assumptions that are made in MSCs.1 Libraries of
MSCs can be organized in complex scenarios with the
POGA tool. An extension of POGA is planned, to sup-
port test sequence generation and to evaluate the test
sequence coverage for given test suites.10 This exten-
sion will enable experiments with test case derivation

94 Bell Labs Technical Journal ! Winter 1997

to begin well before the final implementation of a
design has been completed. The test cases can then
serve not only to verify that a systems implementation
conforms to the design requirements, as usual, but
also to confirm with the target customers of a new sys-
tem that the functionality they have requested has
been understood by the systems engineers well before
the system reaches the implementation phase.

The first trials of these tools, tentatively named
early fault detection tools,2,4 have been very positive.
The close connection that MSC and POGA provide
between formalized and written (textual) require-
ments adds considerable value, filling a gap not prop-
erly addressed by other tools. Our tools offer a
simple, effective way to create and maintain living
descriptions of generic system requirements. The
descriptions provided by these tools supply another
advantage; they comply with international standards
that are also supported by complementary commer-
cial development tools.

Although it is too early to measure the effect tools
such as these can have on the design cycle, we expect
they can improve product quality, simplify require-
ments maintenance, and, ultimately, reduce the time
to market and development cost of new products.

Acknowledgments
We thank our colleagues at Bell Labs, including

Rajeev Alur of the Computing Principles Research
Department, Brian Kernighan of the Computing
Structures Research Department, and Vladimir Levin of
the Design Automation Center—CAD Products
Department, all of whom helped develop the tools pre-
sented in this paper. Discussions with Bob Kurshan and
Mihalis Yannakakis, members of the Computing
Principles Research Department, also influenced the
development of this toolset and the earlier papers on
this subject. We are grateful to Margaret Eng for her
support and valuable input in the first industrial trials
of the toolset at AT&T.

References
1. R. Alur, G. J. Holzmann, and D. Peled, “An

Analyzer for Message Sequence Charts,”
Software Concepts and Tools, Vol. 17, No. 2, Feb.
1996, pp. 70-77.

2. G. J. Holzmann, “Early Fault Detection Tools,”
Software Concepts and Tools, Vol. 17, No. 2, Feb.

1996, pp. 63-69.
3. ITU-T Recommendation Z.120, Message

Sequence Chart (MSC), March 1993. (This rec-
ommendation includes S. Mauw and M. A.
Reniers, “An algebraic semantics of basic
MSCs,” Annex B, The Computer Journal, Vol.
37, No. 4, Apr. 1994, pp. 269-277.)

4. G. J. Holzmann, “Formal Methods for Early
Fault Detection,” Proceedings of Formal Techniques
for Real-Time and Fault Tolerant Systems, Uppsala,
Sweden, Sept. 1996, Lecture Notes in Computer
Science, Vol. 1135, pp. 40-54.

5. V. Levin and D. Peled, “Verification of Message
Sequence Charts via Template Matching,”
Theory and Practice of Software Development,
Lecture Notes in Computer Science, TAPSOFT (FASE)
‘97, Springer-Verlag, Lille, France, 1997,
to be published.

6. J. Ousterhout, Tcl and the Tk toolkit, Addison-
Wesley, Reading, Massachusetts, 1994.

7. R. P. Kurshan, Computer-Aided Verification,
Princeton Univ. Press, Princeton, New Jersey,
1994.

8. T. H. Cormen, C. E. Leierson, and R. L. Rivers,
Introduction to Algorithms, MIT Press, Cambridge,
Massachusetts, 1990.

9. E. R. Gansner, E. Koutsofios, S. C. North, and
K-P. Vo, “A Technique for Drawing Directed
Graphs,” IEEE Transactions on Software
Engineering,Vol. 19, No. 3, May 1993,
pp. 214-230.

10. D. Lee and M. Yannakakis, “Principles and
Methods of Testing Finite State Machines—A
Survey,” Proceedings of the IEEE, Vol. 84, No. 8,
Aug. 1996, pp. 1090-1123.

(Manuscript approved April 1997)

GERARD J. HOLZMANN is a distinguished member of
technical staff in the Computing Principles
Research Department at Bell Labs in Murray
Hill, New Jersey, where he performs research
on computer-aided verification tools. He
received B.S. and M.S. degrees in electrical

engineering and a Ph.D. in technical sciences, all from
Delft University in The Netherlands.

DORON A. PELED received B.S., M.S., and D.S. degrees in
computer science, all from the Technion,
Israel Institute of Technology in Haifa. He
performed postdoctural work at the
University of Warwick in the U.K. Mr. Peled is
a member of technical staff in the

Computing Principles Research Department at Bell Labs

Bell Labs Technical Journal ! Winter 1997 95

in Murray Hill, New Jersey, where he is conducting
research in specification and verification of concurrent
programs, formal semantics, automata theory, and math-
ematical logic. He is also a member of the editorial board
of the journal Formal Methods in System Design.

MARGARET H. REDBERG is a member of technical staff in
the ACTIVIEW®: ASOS & Assets Department
at Network Systems, located in Holmdel, New
Jersey. She is interested in requirements
engineering and methods for large software
projects. Ms. Redberg earned B.S. and M.S.

degrees in industrial and operations engineering from
the University of Michigan in Ann Arbor. !

