# Difração de raios X aplicada ao estudo de materiais

- Interferência de ondas eletromagnéticas. Interação entre Difração: radiação e matéria.
- Átomos nas estruturas cristalinas estão localizados em planos Raios X: cujas distâncias são da ordem de grandeza dos comprimentos de onda na faixa dos raios X
- Aplicada: Estudo de monocristais, policristais e materiais amorfos. Técnica de estado sólido capaz de determinar compostos.
- Não há restrições. Materiais:



- Produção:

## Técnicas

 <u>Monocristal</u>: método fotográfico de Laue difratômetro de duplo cristal
Policristal: método de pó

câmara de Debye -Scherrer difratômetro

- <u>Amorfos:</u> espalhamento a baixo ângulo e a alto ângulo (EXAFS)
- Detecção: filme, contadores Geiger, multicanal.



Diferença de caminho óptico 2x = ML + LN = 2ML = 2LN  $2x = m\lambda$  (interferência construtiva) sen  $\theta = x/d \longrightarrow x = d \text{ sen } \theta$   $m \lambda = 2 d \text{ sen } \theta$ Lei de Bragg

# Lei de Bragg



http://www.eserc.stonybro ok.edu/ProjectJava/Bragg/ index.html









# Lei de Bragg









### 14 redes de Bravais



#### B.D. Cullity. "Elements of X-Ray Diffraction", 1956.

#### MCAFantini IF-USP(2010) PGF5207

**Monocristal:** arranjo periódico de longo alcance de celas unitárias perfeitamente empilhadas.







**Policristal:** arranjo periódico de celas unitárias de tamanho finito orientadas ao acaso.



**Amorfo:** arranjo não periódico de longo alcance. Correlação a curto alcance. RDF







#### MCAFantini IF-USP(2010) PGF5207

B.D. Cullity. "Elements of X-Ray Diffraction", 1956.

### Produção de raios X

### Tubos

Convencional









B.D. Cullity. "Elements of X-Ray Diffraction", 1956.



### B.D. Cullity. "Elements of X-Ray Diffraction", 1956.





### Como gerar radiação síncrotron?

ec



L (beam line) = line IS = injection system (linac + booster) SR = storage ring rf = radio frequency

\_\_\_\_\_



- mq = magnetic quadrupole
- bm = bending magnet
- id = insertion device
- v = valve
- m= mirror
- f = filter
- mon = monochromator
- ec = experimental chamber





The historical development of available X-ray flux

### Características espectrais da fonte de luz







órbita do elétron arco visto pelo observador

Potência irradiada por uma partícula relativística de massa m, carga e, em movimento circular (raio =  $\rho$ ) e energia  $E_{ac}$ .

$$P = \frac{2e^2c\beta^4}{3\rho^2} \left(\frac{E_{ac}}{mc^2}\right)^4$$

$$\beta = \frac{v}{c} \approx 1$$

# Fonte BR de radiação síncrotron







operacionais em ultravioleta e raios-X moles

novas linhas previstas



### LNLS (www.lnls.br)



Energia: 1.37 GeV Corrente: 250 mA Tempo de vida: 19 hs Diâmetro : ~ 30m

XAS (3) and SXS (1) XRD (3) e Cristalografia de proteína (2) SAXS (2) Espectroscopia molecular (2) Fluorescência de raios X (1)

### Linha de luz síncrotron



# Vantagens na utilização da radiação síncrotron

- Produção de radiação X e ultra-violeta pelo menos 5 ordens de magnitude mais intensa que as fontes convencionais.
- Seleção da radiação desejada, através de monocromadores, de um contínuo que vai do infravermelho aos raios X.
- Colimação natural.
- Alta polarização.
- Estrutura pulsada no tempo.
- Ambiente de alto vácuo.
- Fonte de tamanho reduzido.
- Alta estabilidade.

### Áreas de pesquisa beneficiadas

- Física de superfície (EXAFS)
- Química (catálise) (XPS resolvida no tempo)
- Cristalografia de proteínas (dispersão anômala)
- Ciência dos materiais amorfos (XRD, SAXS)
- Análise de traços de elementos (XRF)
- Bioquímica (XRD dependente do tempo)
- Microscopia (~100Å)
- Litografia (circuitos integrados)
- Topografia (defeito em cristais)







#### Cullity, 1956 e Bertin, 1975.

## Contínuo





#### Klug&Alexander, 1974 e Bertin, 1975



### Estrutura atômica





B.D. Cullity. "Elements of X-Ray Diffraction", 1956.

### Escolha da radiação

| Ânodo                              | λ <sub>Kα</sub> (Å) | Filtro | μ/ρ <b>{Metais}</b> |
|------------------------------------|---------------------|--------|---------------------|
| Μο                                 | 0,711               | Zr     | todos               |
| Cu                                 | 1,542               | Ni     | Ni <i>,C</i> u,Zn   |
| Со                                 | 1,790               | Fe     | Fe,Co,Ni,Cu,Zn      |
| Fe                                 | 1,937               | Mn     | Mn,Fe,Co,Ni,Cu,Zn   |
| Cr                                 | 2,291               | V      | V,Cr,Mn,Fe,Co       |
| Metais: Ti V.Cr.Mn.Fe.Co Ni Cu.Zn. |                     |        |                     |



# Método de Debye-Scherrer





#### Klug&Alexander, 1974.

Método de Debye-Scherrer



P = 360 mm = 2  $\pi$  R R = 180/ $\pi$  = 57,3 mm S = R  $\alpha$  (arco= raio x ângulo) P/(S=r) = (2  $\pi$  R) / (4 $\theta$  R)  $\longrightarrow$  rad 360(mm)/r(mm)=2  $\pi$ /(4  $\theta^{\circ}$  x  $\pi$ /180°) r (mm) = 4  $\theta^{\circ}$ 

#### Klug&Alexander, 1974.



Fig. 4-18. Debye-Scherrer photographs prepared under different conditions. (A) Quartz powder,  $<5 \mu$ , specimen stationary. (B) Quartz powder,  $15-50 \mu$ , specimen stationary. (C) Quartz powder,  $15-50 \mu$ , specimen rotating. (D) NaCl, <325 mesh, specimen rotating. (E) Feldspar, <325 mesh, specimen rotating.

### Método de Laue



### Reflexão

 $tg(180^{\circ}-2\theta) = \frac{r_L}{D}$ 



(cubic). Tungsten radiation, 30 kV, 19 mA.



B.D. Cullity. "Elements of X-Ray Diffraction", 1956.

### Método de Laue



Eixo 4



1 1 1 cubic unit cell: 5 5 5 90 90 90

Eixo 3

# Difratômetro







#### MCAFantini IF-USP(2010) PGF5207

#### B.D. Cullity. "Elements of X-Ray Diffraction", 1956.