# Difração de raios X aplicada ao estudo de materiais

• **Difração**: Interferência de ondas eletromagnéticas. Interação entre

radiação e matéria.

• Raios X: Átomos nas estruturas cristalinas estão localizados em planos

cujas distâncias são da ordem de grandeza dos comprimentos de

onda na faixa dos raios X.

• Aplicada: Estudo de monocristais, policristais e materiais amorfos. Técnica

de estado sólido capaz de determinar compostos.

· Materiais: Não há restrições.

#### Propriedades dos raios X

- Descoberto em 1895 por Roentgen.

- Radiação eletromagnética 0,5 <  $\lambda$  < 2,5 Å.

- Produção: e- decelerado

espectro contínuo (branca)

linhas característica (ânodo)



## Técnicas

· <u>Monocristal:</u> método fotográfico de Laue

difratômetro de duplo cristal

Policristal: método de pó

câmara de Debye -Scherrer

difratômetro

Amorfos: espalhamento a baixo ângulo e a alto ângulo (EXAFS)

Detecção: filme, contadores Geiger, multicanal.



Diferença de caminho óptico 2x = ML + LN = 2ML = 2LN  $2x = m\lambda$  (interferência construtiva)  $sen \theta = x/d \longrightarrow x = d sen \theta$   $m \lambda = 2 d sen \theta$ Lei de Bragg

B.D. Cullity. "Elements of X-Ray Diffraction", 1956



http://www.eserc.stonybro ok.edu/ProjectJava/Bragg/ index.html

















#### 14 redes de Bravais



B.D. Cullity. "Elements of X-Ray Diffraction", 1956.

Monocristal: arranjo periódico de longo alcance de celas unitárias perfeitamente empilhadas.



Policristal: arranjo periódico de celas unitárias de tamanho finito orientadas ao acaso.



Amorfo: arranjo não periódico de longo alcance.

Correlação a curto alcance.

RDF





#### Grau de cristalinidade



Fig. 9-1 Back-reflection pinhole patterns of recrystallized aluminum specimens; grain size decreases in the order (a), (b), (c), (d). Filtered copper radiation.



Fig. 3-18 'Comparative x-ray scattering by crystalline solids, amorphous solids, liquids, and monatomic gases (schematic). The three vertical scales are not equal.

B.D. Cullity. "Elements of X-Ray Diffraction", 1956.

## Produção de raios X

#### **Tubos**

#### Convencional







Fig. 1–14 Sealed-off filament x-ray tube. Cooling-water tubes at center connect with internal ducts leading to anode at left end. Three windows: two for projecting square focal spots and one for projecting a line focal spot. Focal spots of three sizes are available with this tube (Type A-5):  $1.2 \times 12.5$  mm,  $0.75 \times 12.5$  mm, and  $0.45 \times 12.5$  mm. (Courtesy of Machlett Laboratories, Inc.)



B.D. Cullity. "Elements of X-Ray Diffraction", 1956.

# Ânodo rotatório



B.D. Cullity. "Elements of X-Ray Diffraction", 1956.





## Como gerar radiação síncrotron?



IS = injection system (linac + booster)

SR = storage ring

rf = radio frequency

L1, L2 = line

mq = magnetic quadrupole

bm = bending magnet

id = insertion device

v = valve

m= mirror

f = filter

mon = monochromator

ec = experimental chamber

MCAFantini IF-USP(2010) PGF5207



The historical development of available X-ray flux

### Características espectrais da fonte de luz



$$\lambda_c = \frac{4\pi mc^2 \rho}{3E_{ac}^3}$$

$$E = h\upsilon = \frac{hc}{\lambda}$$

$$E(keV) = \frac{12.4}{\lambda(\mathring{A})}$$



Energia



Comprimento da ligação

## Escolha da energia

## Órbita do elétron



Potência irradiada por uma partícula relativística de massa m, carga e, em movimento circular (raio =  $\rho$ ) e energia  $E_{ac}$ .

$$P = \frac{2e^2c\beta^4}{3\rho^2} \left(\frac{E_{ac}}{mc^2}\right)^4$$

$$\beta = \frac{v}{c} \approx 1$$

# Fonte BR de radiação síncrotron

**Brazilian Synchrotron Light** Laboratory Laboratório Nacional de Luz Sincrotron

Diagrama das linhas de luz do LNLS



CNPEM





### LNLS (www.lnls.br)



Energia: 1.37 GeV

Corrente: 250 mA

Tempo de vida: 19 hs

Diâmetro: ~ 30m

XAS (3) and SXS (1)

XRD (3) e Cristalografia de proteína (2)

SAXS (2)

Espectroscopia molecular (2)

Fluorescência de raios X (1)

## Linha de luz síncrotron



# Vantagens na utilização da radiação síncrotron

- Produção de radiação X e ultra-violeta pelo menos 5 ordens de magnitude mais intensa que as fontes convencionais.
- Seleção da radiação desejada, através de monocromadores, de um contínuo que vai do infravermelho aos raios X.
- Colimação natural.
- Alta polarização.
- Estrutura pulsada no tempo.
- · Ambiente de alto vácuo.
- · Fonte de tamanho reduzido.
- Alta estabilidade.

# Áreas de pesquisa beneficiadas

- Física de superfície (EXAFS)
- Química (catálise) (XPS resolvida no tempo)
- Cristalografia de proteínas (dispersão anômala)
- · Ciência dos materiais amorfos (XRD, SAXS)
- Análise de traços de elementos (XRF)
- Bioquímica (XRD dependente do tempo)
- Microscopia (~100Å)
- Litografia (circuitos integrados)
- Topografia (defeito em cristais)

• Intensidade  $\infty$  I (mA)  $\infty$  V<sup>2</sup> (kV)<sup>2</sup>  $\infty$  Z

$$Int_{\lambda} = kIZ \left(\frac{\lambda}{\lambda_{\min}} - 1\right) \frac{1}{\lambda^{2}}$$
$$Int_{\text{int }egrada} = 1,4 \times 10^{-9} IZV^{2}$$



X-ray tube

Z

| 000 | filament transformer | 0000000000 | filament transformer | 0000000000 | filament transformer | 110 volts Ac | | | 110 volts Ac | | 110 v



## Continuo



FIG. 1.3. Continuous spectrum from an infinitely thick target regarded as the summation of the individual continua from a stack of very thin targets.



tungsten at several voltages. [Courtesy of C. Ulrey, Phys. Rev., 11, 401 (1918).]

## Característico

### Estrutura atômica



Fig. 1-11 Atomic energy levels (schematic). Excitation and emission processes indicated by arrows. The insert at top right shows the fine structure of the L state. After Barrett [1.7].

$$\frac{I_{K\alpha 1}}{I_{K\alpha 2}} = \frac{2}{1}$$

$$\lambda_{K\alpha} = \frac{2 \times \lambda_{K\alpha 1} + \lambda_{K\alpha 2}}{3}$$



Fig. 1-5 Spectrum of Mo at 35 kV (schematic). Line widths not to scale. Resolved  $K\alpha$  doublet is shown on an expanded wavelength scale at right.

B.D. Cullity. "Elements of X-Ray Diffraction", 1956.

## Escolha da radiação

| Ânodo                              | λ <sub>Κα</sub> ( <b>Å</b> ) | Filtro | μ <b>/</b> ρ <b>{Metais}</b> |
|------------------------------------|------------------------------|--------|------------------------------|
| Мо                                 | 0,711                        | Zr     | todos                        |
| Cu                                 | 1,542                        | Ni     | Ni,Cu,Zn                     |
| Со                                 | 1,790                        | Fe     | Fe,Co,Ni,Cu,Zn               |
| Fe                                 | 1,937                        | Mn     | Mn,Fe,Co,Ni,Cu,Zn            |
| Cr                                 | 2,291                        | V      | V,Cr,Mn,Fe,Co                |
| Metais: Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn. |                              |        |                              |

Sem filtro

Sem filtro

Com filtro

Radiação: Cu

B.D. Cullity. "Elements of
X-Ray Diffraction", 1956.

Fig. 1-13 Comparison of the spectra of copper radiation (a) before and (b) after passage through a nickel filter (schematic). The dashed line is the mass absorption coefficient of

nickel.

MCAFantini IF-USP(2010) PGF5207

## Método de Debye-Scherrer





Klug&Alexander, 1974.

# Método de Debye-Scherrer



 $P = 360 \text{ mm} = 2 \pi R$ 

 $R = 180/\pi = 57.3 \text{ mm}$ 

 $S = R \alpha$  (arco= raio x ângulo)

 $P/(S=r) = (2 \pi R) / (4\theta R) \longrightarrow rad$ 

 $360(mm)/r(mm)=2 \pi/(4 \theta^{\circ} \times \pi/180^{\circ})$ 

 $r (mm) = 4 \theta^{\circ}$ 



Fig. 4-18. Debye-Scherrer photographs prepared under different conditions. (A) Quartz powder,  $<5\,\mu$ , specimen stationary. (B) Quartz powder,  $15-50\,\mu$ , specimen stationary. (C) Quartz powder,  $15-50\,\mu$ , specimen rotating. (D) NaCl, <325 mesh, specimen rotating. (E) Feldspar, <325 mesh, specimen rotating.

Klug&Alexander, 1974.

## Método de Laue

Transmissão

$$tg2\theta = \frac{r_L}{D}$$



Reflexão

$$tg(180^{\circ} - 2\theta) = \frac{r_L}{D}$$



Fig. 3-6 (a) Transmission and (b) back-reflection Laue patterns of an aluminum crystal (cubic). Tungsten radiation, 30 kV, 19 mA.



B.D. Cullity. "Elements of X-Ray Diffraction", 1956.

## Método de Laue



## Difratômetro





