O que é a intensidade difratada?

Como relacionar a intensidade com a posição dos átomos no cristal?

Raios X espalhado coerentemente por um elétron

 $\left| I = I_o \frac{e^4}{r^2 m^2 c^4} sen^2 \alpha = I_o \frac{e^4}{r^2 m^2 c^4} \left(\frac{1 + \cos^2 2\theta}{2} \right) \right|$

fator de polarização

Fórmula de Thomson

Raios X espalhado coerentemente por um átomo

- f = fator de espalhamento atômico
- f = <u>amplitude da onda espalhada por um átomo</u> amplitude da onda espalhada por um elétron
- $f = f_o + \Delta f' + i \Delta f''$

dispersão anômala

B.D. Cullity,1956 e Klug&Alexander,1974

Fator de espalhamento atômico vs. Z

Klug&Alexander,1974

Raios X espalhado coerentemente por uma cela unitária

• Fator de estrutura

$$F_{hkl} = \sum_{j=1}^{N} f_{j} e^{2\pi i (hx_{j} + ky_{j} + lz_{j})}$$

 |F| = <u>amplitude da onda espalhada por todos os átomos da cela</u> amplitude da onda espalhada por um elétron

Fator de multiplicidade

{111} quatro conjuntos de planos {111} {111} (cúbico) {111} {111} {100} três conjuntos de planos {100} {010} {001} $p_{\{111\}} = 4/3 p_{\{100\}} \longrightarrow I_{\{111\}} = 4/3 I_{\{100\}}$

Fator de Lorentz

$$\begin{array}{c}
 \int a_{1} & a_{2} & a_{3} \\
 \int a_{1} & a_{2} & a_{3} \\
 \int a_{1} & a_{2} & a_{3} \\
 \int B \propto \frac{1}{\cos \theta_{B}}
\end{array}$$

$$\begin{array}{c}
 B \propto \frac{1}{\cos \theta_{B}}$$

$$\begin{array}{c}
 B \propto \frac{1}{\cos \theta_{B}}
\end{array}$$

$$\begin{array}{c}
 B \propto \frac{1}{\cos \theta_{B}}$$

$$\begin{array}{c}
 B \propto \frac{1}{\cos \theta_{B}}
\end{array}$$

$$\begin{array}{c}
 B \propto \frac{1}{\cos \theta_{B}}$$

$$\begin{array}{c}
 B \propto \frac{1}{\cos \theta_{B}}
\end{array}$$

$$\begin{array}{c}
 B \propto \frac{1}{\cos \theta_{B}}$$

$$\begin{array}{c}
 B \propto \frac{1}{\cos \theta_{B}}
\end{array}$$

$$\begin{array}{c}
 B \propto \frac{1}{\cos \theta_{B}}$$

B.D. Cullity. "Elements of X-Ray Diffraction", 1956

Número de partículas orientadas próximas a $\theta_B \pm \Delta \theta$

ΔN	$r\Delta\theta 2\pi rsen(90^{\circ}-\theta_B)$	$\Delta\theta\cos\theta_B$
\overline{N}	$-4\pi r^2$	2

B.D. Cullity. "Elements of X-Ray Diffraction", 1956

Intensidade Difratada

Para o caso específico de medidas efetuadas em difratômetro de pó, a expressão para a intensidade é da forma:

 $I(hkl) = M |F(hkl)|^{2} [(1 + \cos^{2}2\theta_{o}\cos^{2}2\theta)/(1 + \cos^{2}2\theta_{o})] (\operatorname{sen}^{2}\theta \cos\theta)^{-1} A(\theta)$

onde M é o fator de multiplicidade, o termo entre colchetes é o fator de polarização, o termo entre parênteses é o fator de Lorentz e $A(\theta)$ é o fator de absorção. Por exemplo, quando se utiliza um monocromador de LiF, com reflexão 200, temos cos² 2 θ_0 = 0,5. Na equação acima $|F(hkl)|^2$ é da forma:

$$|F(hkl)|^{2} = |\sum_{N} f_{N} e^{-(B_{N} sen^{2}\theta/\lambda^{2})} e^{2\pi i (hx_{N} + ky_{N} + lz_{N})}|^{2}$$

Extinções características do tipo de rede

Condição para	Tipo de rede	Símbolo da rede
não extinção		
da reflexão (hkl)		
todos (hkl) presentes	Simples (Primitiva)	P,C(hex), R
h+ k+ l = 2n	Corpo centrado	I
h+ k = 2n	(001) face centrada	С
h+ l = 2n	(010) face centrada	В
k+ l = 2n	(100) face centrada	Α
k+ = 2n		
h+ l = 2n	Face centrada	F
h+ k = 2n		
h- k = 3n	Tripla primitiva hexagonal	Н
-h+ k+ l = 3n	Rede trigonal (romboédrica)	
ou	indexada com eixos hexagonais	R
h- k+ l = 3n		
h+ k+ l = 3n	Primitiva hexagonal indexada	
	com eixos trigonais (romboédricos)	P,C(hex)
Extinções para pl	anos de deslizamento (glide) e paraf	uso (screw)

Determinação das dimensões da cela unitária indexação e parâmetros de rede

$$\begin{aligned} \hline Cristais \ cúbicos \\ d_{hkl} &= \frac{a}{\sqrt{h^2 + k^2 + l^2}} \Rightarrow \frac{1}{d_{hkl}^2} = \frac{h^2 + k^2 + l^2}{a^2} = \frac{s}{a^2} \\ d_{hkl}^2 &\times s = a^2 (verificação!) \\ \lambda &= 2d_{hkl} sen \theta_{hkl} \Rightarrow \frac{1}{d_{hkl}^2} = \frac{4sen^2 \theta_{hkl}}{\lambda^2} \\ \frac{h^2 + k^2 + l^2}{a^2} &= \frac{4sen^2 \theta_{hkl}}{\lambda^2} \Rightarrow \frac{sen^2 \theta_{hkl}}{h^2 + k^2 + l^2} = \left(\frac{\lambda}{2a}\right)^2 (verificação!) \\ \end{aligned}$$

$$\begin{aligned} \mathbf{Rede} \qquad \mathbf{s} = \mathbf{h}^2 + \mathbf{k}^2 + \mathbf{l}^2 \end{aligned}$$

Cúbica simples Cúbica de corpo centrado 2,4,6,8,10,12,14,16,... Cúbica de face centrada 3,4,8,11,12,16,... Cúbica (diamante)

1,2,3,4,5,6,8,9,10,11,12,14,16,... 3,8,11,16,...

Indexação

MCAFantini IF-USP(2010) PGF5207

B.D. Cullity. "Elements of X-Ray Diffraction", 1956

Padrões de pó (ICDD-JCPDS)

d	2.82	1.99	1.63	3.26	NaC1						×
1/11	100	55	15	13	Sodium Chlor	ide			(Halite)		
$\begin{array}{c} \text{Rad. 0}\\ \text{Cut of}\\ \text{Ref. 3}\\ \text{Sys. 0}\\ a_0 \\ \text{Ref. 1}\\ \text{Ref. 1} \end{array}$	Rad. CuKa1 λ 1.5405FilterNiDia.Cut off $1/I_1$ Diffractometer $1/I_1$ cor.Ref. Swanson and Fuyat, NBS Circular 539, Vol. 2, 41(1953)Sys. CubicS.G. Fm3m(225)a0S.6402b0c0AC α β y Z. 4Dx 2.164Ref. Ibid.					d A 3.258 2.821 1.994 1.701 1.628 1.410 1.294 1.261 1.1515	1/11 13 100 55 2 15 6 1 11 7	bk1 111 200 220 311 222 400 331 420 422	d A	1/11	hkl
An ACS hydroc X-ray Merck	D (bid. 5 reagent chloric ac pattern a Index, 8t	grade san cid. at 26°C. th Ed., p.	mp mp ple recry 956.	y Color vstallized	Sign Colorless	0.9969 .9533 .9401 .8917 .8601 .8503 .8141	1 2 1 3 4 1 3 2	1 511 2 440 1 531 3 600 4 620 1 533 3 622 2 444			
FORM M-2			-						·		

B.D. Cullity,1956

Outras informações relevantes do difratograma

• Tamanho de grão: (Scherrer)

$$D_{hkl} = \frac{0,89\lambda}{\beta_{hkl}\cos\theta_{hkl}}$$
$$B_G^2 = \beta_{hkl}^2 + b^2$$
$$B_L = \beta_{hkl} + b$$
$$B_i = \text{medido}$$
$$b = \text{padrão}$$

Orientação preferencial

 P_r = razão das intensidades das amostras aleatoriamente orientadas P_o = razão das intensidades de uma amostra orientada

radiação de fundo (background) correção de Rachinger (superposição de $\lambda_{K\alpha 1} e \lambda_{K\alpha 2}$). B.D. Cullity. "Elements of X-Ray Diffraction", 1956

Tamanho de grão

λ=1,5Å; d=1,0Å; θ=49°

a) 1 mm cristal; B = 0,04sec (muito pequeno para ser observado). b) 500 Å cristalito; B = 0,2° (observado)

MCAFantini IF-USP(2010) PGF5207

B.D. Cullity. "Elements of X-Ray Diffraction", 1956

Tamanho de grão (< 1000 Å)

Para que haja interferência destrutiva a diferença de fase entre 2 raios deve ser igual a $\lambda/2$.

Alargamento do pico de difração:

- Instrumental
- Δλ
- θ + $\Delta \theta$

B.D. Cullity. "Elements of X-Ray Diffraction", 1956

Dedução da fórmula de Scherrer

$$B = \frac{1}{2} (2\theta_1 - 2\theta_2)$$

$$2tsen\theta_1 = (m+1)\lambda \rightarrow (B'eL')$$

$$2tsen\theta_2 = (m-1)\lambda \rightarrow (C'eN')$$

$$t(sen\theta_1 - sen\theta_2) = \lambda$$

$$2t\cos\left(\frac{\theta_1 + \theta_2}{2}\right)sen\left(\frac{\theta_1 - \theta_2}{2}\right) = \lambda$$

$$\theta_1 + \theta_2 \approx 2\theta_B$$

$$sen\left(\frac{\theta_1 - \theta_2}{2}\right) \approx \frac{\theta_1 - \theta_2}{2}$$

$$2t\left(\frac{\theta_1 - \theta_2}{2}\right)\cos\theta_B = \lambda$$

$$t = \frac{1(\sim 0.9)\lambda}{B\cos\theta_B}$$

θ+Δθ → 0,005λ (λ/2)/(0,005λ) = 100 planos para baixo Planos 101-200 cancelam 1-100

Correção de Rachinger

Intensidade da reflexão

• Integral de pico:

Profundidade de penetração

•A que espessura da amostra se deve a informação obtida no diagrama de raios X obtido por reflexão?

•A intensidade dos raios X incidentes decresce exponencialmente com a distância abaixo da superfície. I = $I_0e^{-\mu t}$

•A energia incidente no volume (I dx)é $I_o e^{-\mu(AB)}$

a = fração em volume da amostra que contém partículas com a orientação correta para difratar o feixe incidente

b = fração da energia incidente difratada por unidade de volume

·A energia difratada na camada considerada é abl $I_oe^{-\mu(AB)}dx$

•O decréscimo por absorção é $e^{-\mu(BC)}$,

$$dI_{D} = ablI_{o}e^{-\mu(AB+BC)}dx$$
$$l = \frac{1}{sen\gamma}, AB = \frac{x}{sen\gamma}, BC = \frac{x}{sen\beta}$$
$$dI_{D} = \frac{abI_{o}}{sen\gamma}e^{-\mu x(1/sen\gamma+1/sen\beta)}dx$$

Mas no difratômetro $\gamma = \beta = \theta$

$$dI_{D} = \frac{I_{o}ab}{sen\theta} e^{-2\mu x/sen\theta} dx$$
$$I_{D} = \int_{0}^{\infty} dI_{D} = \frac{I_{o}ab}{2\mu}$$

MCAFantini IF-USP(2010) PGF5207

B.D. Cullity. "Elements of X-Ray Diffraction", 1956

Critério de espessura infinita

Área exposta

- w = largura do feixe
- D = largura da amostra

Comparação entre as técnicas de difração

- Raios X: aparato experimental menos sofisticado
 - facilidade na preparação de amostras
 - pouca sensibilidade para elementos com baixo Z.
- Elétrons:
- adequado para gases e filmes finos (max 2000Å)
- espalhamento por elétrons e núcleo (vácuo)

$$\lambda = \frac{h}{p} = \frac{h}{m_e v}; E_{cin} = \frac{1}{2}m_e v^2 = V \Longrightarrow v = \sqrt{\frac{2V}{m_e}}$$

$$\lambda = \frac{h}{\sqrt{2Vm_e}} \Longrightarrow V = 10keV \Longrightarrow \lambda = 1,2\text{\AA}$$

- Nêutrons:
- nêutrons são espalhados pelos núcleos atômicos
 - reatores nucleares
 - detecção de elementos com baixo Z.

$$\lambda = \frac{h}{mv}; \frac{1}{2}mv^2 = \frac{3}{2}k_BT$$
$$\lambda = \sqrt{\frac{h^2}{3mk_BT}} \Longrightarrow T = 660K \Longrightarrow \lambda = 1\text{\AA}$$
$$T = 73K \Longrightarrow \lambda = 3\text{\AA}$$
$$T = 6.6K \Longrightarrow \lambda = 10\text{\AA}$$