Espalhamento dos raios X pela matéria (SAXS)

http://www-structure.llnl.gov/Xray/101index.html

Arranjo experimental

Resultados experimentais

A.F. Craievich, 2005

Polidispersividade

A.F. Craievich, 2005

Sistemas Concentrados

Isotrópico e Anisotrópico

Amplitude total
$$\rightarrow$$
 I = $|A|^2$

• Volume total:

$$F(\vec{q}) = A_o p^{1/2} \left(\frac{\mu_o e^2}{4\pi m R} \right)_0^r \rho(\vec{r}) e^{i\vec{r}\cdot\vec{q}} d\vec{r}$$
$$\rho(\vec{r}) \stackrel{\text{F.T.}}{\to} F(\vec{q}) \qquad \text{Informação estrutural}$$

Correlação entre difração e T.F.

Propriedades da transformada de Fourier:

Espalhamento devido a um único elétron

Equação de espalhamento Thomson

Espalhamento devido a dois elétrons

- Diferença de caminho = $\vec{r} \cdot \vec{s}_o \vec{r} \cdot \vec{s} = -\vec{r} \cdot (\vec{s} \vec{s}_o)$
- Fase : $\left| \Phi = -\left(\frac{2\pi}{\lambda}\right) \vec{r} \cdot (\vec{s} - \vec{s}_o) \right|$ $\left| \vec{q} = \frac{2\pi(\vec{s} - \vec{s}_o)}{\lambda} \right|$ πt $\left|\left|\vec{q}\right| = \frac{2\pi \left|\left(\vec{s} - \vec{s}_o\right)\right|}{2}$ plano de reflexão $\left| \left(\vec{s} - \vec{s}_o \right) \right| = 2 \operatorname{sen} \theta$ $\Phi = -\vec{q} \cdot \vec{r}$ $q = \frac{4\pi sen\theta}{2}$ Vetor de espalhamento $A_{p} = A_{p_{1}} + A_{p_{2}} = A_{p_{1}} + A_{p_{1}}e^{-i\vec{q}\cdot\vec{r}}$

Representação complexa (informação estrutural)

MCAFantini IF-USP(2010) PGF5207

٠

Generalização: espalhamento atômico

(átomo = Z elétrons) $A_{P} = \sum A_{Pn} e^{-i\vec{q}\cdot\vec{r}_{n}}$ $I = A_{P} A_{P}^{*}$ $I_1 = I_o \left(\frac{e^2}{m_o^2} \right)^2 (1 + \cos^2 2\theta) / 2R^2$ Mudando a grandeza $(A \rightarrow F)$ $A_{p} \rightarrow F, A_{p_{n}} \rightarrow F_{p}$ F = fator de espalhamento atômico (fator de forma) para r = 0, F_{P} = 1 e F = Z $F = \sum e^{-iq\cdot r_n}$ $I = (FF^*)I_1$

Fator de espalhamento do cobre

- Intensidade espalhada por um átomo de cobre:
- $I_{Cu} = (F_{Cu})^2$. I_e • an unidades relatives: $T_e = (F_{Cu})^2$
- em unidades relativas: $I_{Cu} = (F_{Cu})^2 \cdot (1 + \cos^2\theta)$

fator de polarização f dos elementos podem ser encontrados na International Tables for X-ray Crystallography

Generalização:
 Uma amostra com N átomos:

Espalhamento num volume qualquer

p(r) é a função de auto-correlação: mede a correlação entre densidades em dois pontos quaisquer separados por r.

Espalhamento de raios X a baixo ângulo (SAXS)

 Hipóteses: 1. A amostra é estatisticamente isotrópica quando tomada uma média sobre seu volume. p(r) =p(r)

2. Não existe ordem de longo alcance. $p(r)_{\infty} = \langle \rho \rangle^2$

3. A amostra é formada por 2 meios separados por uma interface bem definida; cada uma delas caracterizada por uma densidade eletrônica ρ_i e uma fração em volume ϕ_i , tal que a densidade média da amostra é: = $\rho_1 \phi_1 + \rho_2 \phi_2 \operatorname{com} \phi_1 + \phi_2 = 1$.

- Flutuação de densidade eletrônica: η , $\eta_i = \rho_i \langle \rho \rangle$ para i =1,2
- Função de correlação: $\gamma(\vec{r}) = \langle \eta(\vec{r}_o)\eta(\vec{r}_o + \vec{r}) \rangle = p(\vec{r}) \langle \rho \rangle^2$

$$(\Delta \rho)^2 = (\rho - \langle \rho \rangle)^2 = \rho^2 - V \langle \rho \rangle^2 = V \gamma(r)$$

• "Não há espalhamento para um meio infinito com densidade eletrônica constante".

$$I(q) = V \int 4\pi r^2 dr \gamma(r) \frac{senqr}{qr}$$

$$pois \left\langle e^{-i\vec{q}\cdot\vec{r}} \right\rangle = \frac{senqr}{qr}$$

$$V\gamma(r) = \frac{1}{2\pi^2} \int q^2 dq I(q) \frac{senqr}{qr}$$

$$I(0) = V \int 4\pi r^2 dr \gamma(r)$$

$$V\gamma(0) = \frac{1}{2\pi^2} \int q^2 dq I(q) = V (\Delta \rho)^2$$

$$Q = \int q^2 dq I(q) = 2\pi^2 V (\Delta \rho)^2 \quad \square \quad \text{Invariante}$$

Significado físico da função de correlação

$$\gamma(\vec{r}) = p(\vec{r}) - \langle \rho \rangle^{2}$$

$$\gamma > 0; \gamma = 0; \gamma < 0$$

γ(r) = 0 ⇒não há correlação

A probabilidade de se encontrar uma outra partícula a esta distância é a mesma de um sistema aleatório.

- γ(r) > 0 → os objetos tendem a estar mais a esta distância que no caso de uma distribuição aleatória.
- γ(r) < 0 → os objetos tendem a estar menos a esta distância que no caso de uma distribuição aleatória.

Partículas isoladas - Região de Guinier

Limite de Porod

- r << D (comprimentos típicos da amostra)
- grandes q >> D⁻¹ (interface entre os meios)
- Superfície específica:

- InI vs. Inq
- para q grandes: inclinação = 4

Procedimento de análise dos dados experimentais

Intensidade corrigida

 $I = I_m / T_{amostra} - I_{parasita}$

- I = intensidade corrigida
- I_m = intensidade medida

T_{amostra} = transmissão da amostra

 $\mathbf{I}_{\text{parasita}}$ = espalhamento parasita (medição do espalhamento de raios X sem amostra)

(correção pelo tamanho do feixe = smeared & desmeared)

Região de Guinier:

gráfico de ln I vs. q^2 ; I = I_o exp (- $q^2 R_g^2/3$) ln I = k - ($R_q^2/3$) q^2

coeficiente angular ($qR_g < 1$) Partículas esféricas: R =($\sqrt{5/3}$)R_g

 Região de Porod: gráfico InI vs. Inq q grandes
 Coeficiente angular = - 4 (interface abrupta)

Constante de Porod

$$K_P = \lim_{q \to \infty} (Iq^4)$$

- Medidas:
- Iq⁴ = (I_{esp} + B)q⁴
 I = intensidade medida da amostra
 I_{esp} = intensidade esperada com o desconto do "background" B
 B = radiação de fundo
- Invariante Q
 Área sob a curva Iq² vs. q

$$\left| Q = \int_{0}^{\infty} I(q)q^{2}dq = 2\pi^{2}V(\Delta\rho)^{2} \right|$$

Raio de Porod

- Constante de Porod: $K_p = 2\pi S(\Delta \rho)^2$
- S = superfície da partícula ou poro constituinte do material
- $S/V = K_{p}/[2\pi V(\Delta \rho)^{2}] = K_{p}\pi / /[2\pi^{2}V(\Delta \rho)^{2}] = K_{p}\pi / Q$

Mais informações sobre SAXS: http://web.if.usp.br/cristal/node/9 (NanoStar)