Física Matemática I - 4300204 - T3

$10^{\underline{a}}$ lista

- 1) Mostre que a) $P_{2k+1}(0) = 0$, b) $P_{2k}(0) = \frac{(-1)^k}{2^{2k}(k!)^2}$, c) $P_l(1) = 1$, d) $P_l(-1) = (-1)^l$.
- 2) Mostre que

a)
$$\int_{0}^{1} P_{l}(x)dx = \frac{P_{l-1}(0) - P_{l+1}(0)}{2l+1}, \quad (l \ge 1)$$
b)
$$\int_{0}^{1} P_{l}(x)dx = \frac{P_{l-1}(0)}{l+1}, \quad (l \ge 1)$$
c)
$$\int_{0}^{1} P_{2l}(x)dx = 0, \quad (l \ge 1)$$
d)
$$\int_{0}^{1} P_{2l+1}(x)dx = \frac{(-1)^{l}(2l)!}{2^{2l+1}l!(l+1)!}, \quad (l \ge 1)$$

- 3) Faça o gráfico de $P_0(x)$, $P_1(x)$ e $P_2(x)$ e mostre explicitamente que $P_0(x)$, $P_1(x)$ e $P_2(x)$ são ortogonais no intervalo (-1,1).
- 4) A partir da ortogonalidade dos Polinômios de Legendre mostre que

a)
$$\int_{-1}^{1} P_l(x) dx = 0$$
, $(l \ge 1)$

b)
$$\int_{-1}^{1} (ax+b)P_l(x)dx = 0$$
, $(l \ge 2)$

5) Usando a fórmula de Rodrigues mostre que

a)
$$\int_{-1}^{1} x^m P_l(x) dx = 0, \ m < l$$

b)
$$\int_{-1}^{1} x^{l} P_{l}(x) dx = \frac{2^{l+1} (l!)^{2}}{(2l+1)!}$$

- 6) Dois hemisférios condutores de raio a são ajustados um contra o outro, formando uma esfera, mas são isolados ao longo do círculo de contato. O hemisfério superior é mantido em um potencial constante $+V_0$ e o hemisfério inferior em um potencial constante $-V_0$. Ache o potencial V nos pontos externos aos dois hemisférios.
- 7) O hemisfério definido por $r=a,\ 0\leq \theta<\pi/2$, tem um potencial eletrostático $+V_0$, e o hemisfério $r=a,\ \pi/2<\theta\leq\pi$, tem um potencial eletrostático $-V_0$. Calcule o potencial V para pontos internos à esfera.
- 8 Calcule o potencial na região externa de uma esfera condutora de raio r_0 , colocada numa região onde existia uma campo elétrico uniforme e constante, E_0 , orientado na direção z, sendo que o potencial na esfera é dado por V_0 .