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INTRODUCTION 

Scientific knowledge diverges considerably from that which is used in everyday life. Some 
aspects make this very clear, as the particularity of science making use of abstract concepts 
that establish an indirect relationship with familiar objects and situations.  Some authors use 
the expression “scientific culture” (Joshua and Dupin, 1993, Lemke, 1998a, Astolfi, 1994, 
Bachelard, 1938) in opposition to “common sense culture” as a way to stress the difference 
between both these types of knowledge. In comparing these two cultures, the language used 
is a considerable source of differentiation. Given that science generally uses mathematics to 
express its ideas, contrary to what commonly takes place. Among the experimental sciences, 
physics is the most formalized one. Since the XVII century, physics has treaded an ample and 
safe course towards crescent mathematical practices. (Paty, 1999). Currently, Mathematics is 
definitely lodged in the core of physics, hence becoming evident when encountering the 
products of its scientific activities. In the literature, as books and articles, one can perceive 
that mathematics enters the physical discourse by means of functions, equations, graphics, 
vectors, tensors, inequations, geometries, among others. Owing to the important role mathe-
matics has played in the organization of physical theories, some authors view its adoption as 
a criterion of rationality, and not merely as indicative of conventionality or empiricism (Si-
mon, 2005). Paty2 approached a similar theme when he proposed that intensifying mathemat-
ical knowledge, particularly that which is employed in the organization of physical problems, 
broadens human rationality. This is apparent in the debates concerning mathematical systems 
to represent theories. Far from comprising simple choices of convenience, the definition of 
formal systems has been the object of questions that involve physical signification of theories 
(Silva and Martins, 2002).  

Researchers from all areas of Physics have no doubt that without Mathematical cognizance, 
by no means simple knowledge, it is unfeasible to produce good physics seeing the progress 
being made towards breaking research3. 

In physics teaching, mathematics is often considered responsible for scholastic failure. It is 
customary to hear from teachers that their students do not understand physics on account of 
their fragility in mathematical understanding. Many consider that a solid mathematical base 
in the years that precede physics teaching guarantees successful learning.  

The training for physics research presumes that mathematics is definitively lodged in the 
body of sciences and the university curriculums reflect such perception, with substantial em-

                                           
1 Financial support from Brazilian Science and Technology Council.   
2 Paty, 2000 
3 Some attempts came far over the last century. See, for exemple, The Mathematical Training of Social 
Scientists, Report of the Boulder Symposium, Econometrica, Vol. 18, No. 2 (Apr., 1950), pp. 193- 205, 
(http://links.jstor.org/sici?sici=0012-9682(195004)18:2%3C193:TMTOSS%3E2.0.CO;2-A)  
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phasis on mathematical preparation. The study programmes in physics include many mathe-
matics subjects (linear algebra, geometry, advanced calculus, etc.) and, often, it is difficult to 
differentiate them from courses in mathematics4. The overabundance of mathematics is often 
held accountable for demotivating some of the students entering such courses.  The mathe-
matical barrier is too high for many students intending to study physics, thus contributing to  
high dropout rates and course transference.   

The relationship inferred between physics and mathematics from university curriculums re-
flects a type of “professional pre-requisite” hierarchy: to study physics one must know ma-
thematics, that being the case, let us teach it first! However, posing the question like this cov-
ers up the problem of knowing how mathematics should be taught when the intention is to 
use it as an instrument of thought in physics. 

In general education, the situation does not differ much. As a rule, teachers and students alike 
agree that mathematics is one of the greatest problems in physics teaching/learning at school. 
For example, kinematics, which is widely taught in secondary education, is strongly based on 
the knowledge of functions. It is not uncommon for teachers to strive in the physical interpre-
tation of problems, even presenting the function that represents the problems solution to then 
say: “from now on it is only mathematics and the solution to this was already presented to 
you in a previous subject”. This implies that once the problem has been understood, from a 
physical point of view, from then on such competencies are no longer that teacher’s responsi-
bility. The transformation of the problem is a mathematical algorithm and solving this would 
depend on skills learned in other subjects. Frequently, physics teachers end up ascribing to 
mathematics the accountability for learning difficulties and not to what they teach. Errors by 
students in solving high school-level equations, calculus of angular coefficients of curves in 
graphs, solving systems of equations, etc. are common, hence reinforcing the concept that we 
are dealing with a lack of mathematical knowledge.  

Redish (2005) discusses this standpoint by saying that “…the language of mathematics we 
use in physics is not the same as the one taught by mathematicians. There are many notable 
differences” (page 1). Admitting that a many of the problems in physics teaching are found in 
commanding Mathematics reflects a naive epistemological positioning and ends up consider-
ing the latter an instrument of the former! It is vital to specify the role played by mathematics 
in building up physical cognizance, because as long as constitutive knowledge of natural 
sciences exists, just like a boulder, there is an eternal dilemma5 of placing between concrete 
and abstract, between reason and experience. Many consider it merely as an instrument of 
empirical method, while for others; it is the very essence of actuality, with physics as the me-
thod by which to attain it. The eventual solutions will find support in deeper analyses of the 
relationship that physics maintains with mathematics. There is a need to probe deeper with 
regards to the formation of physics cognizance, in order to better evaluate the function of 
mathematics in teaching. The manner by which this has been approached within the context 
of physics education transforms mathematics teaching into a pedagogical-obstacle6. To col-
laborate in order to overcome it is this work’s proposal.  

   
                                           
4 It is usual to have a basic two year course for all science courses, as Mathematics, Physics, Chemistry or En-
gineering.  
5 Paty states that is a "drama between the Real and the symbolic abstract". Paty, 1988, pp 234  
6 See Astolfi 1994. 
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HISTORICAL APPROACH TO THE RELATIONSHIP BETWEEN 
PHYSICS AND MATHEMATICS 
We learn to see physical laws expressed in mathematical language. Although it seems natural 
that it is so, a more critical view can reveal that it is a relationship built over time. For Bunge 
(1973, 1985),  the capacity of mathematical systems to correctly represent natural phenome-
nons is the outcome of historical success, that is, a result of a process legitimized by time. For 
Lautman, “there is a physical reality and the miracle in explaining this is the need for more 
developed mathematical theories to explain it”7. Going back to history offers the opportunity 
to evaluate other manners of expressing “laws” of the natural world.  In ancient times, in the 
Middle Ages and Renaissance, natural phenomenons as the falling of bodies and the move-
ment of the stars were interpreted by means of conceptual systems very different from those 
sustained by modern science. The Egyptians and the Babylonians elaborated cosmological 
systems, including forecasting celestial events and calendars that did not comprise mathemat-
ics as their main basis. (Kuhn, 1957) Refraining from deviating too much from the modern 
scientific tradition, we can take as an example the “Aristotelian Physics”, whose interpreta-
tion of the physical world was based on the idea of a natural place and in the law that asserts 
that the bodies sought out their natural place in the universe: bodies with an earth type es-
sence would be closer to the center of the Universe, contrary to the fire types, which would 
be in the peripherical part of the terrestrial sphere (Ibid). Also, the arguments apart from these 
thoughts, by Buridan, Oresme and other medieval scholars were not mathematical either. 
Originally, such thoughts were described in Medieval Latin, making use of refined argu-
ments, but presented in non-formal language, as in most of the pre-scientific treatises of that 
time.  

It was in the XVII century, with the coming of modern science that natural phenomenons 
began to be systematically expressed by means of mathematical relationships.  Such practice 
became the Pythagorean traditional heritage. In it, nature was conceived by means of analo-
gies between phenomenons and the idealized relationships that were elicited. Geometry was 
nature’s language par excellence, with the world as its arena for inspiration and application of 
the relationships produced there. Mathematics was the lining of ideal forms that were be-
lieved to be in the very essence of nature8. Galileo introduced a small modification in the 
Pythagorean tradition. For him, Mathematics was an understanding that enabled direct inter-
pretation of nature (Paty, 1988)9. Galileo presented his idea on the language of nature in the 
Il Saggiatore text.10 With regards to the Galilean conception Paty states that: 

To justify the mathematical character of magnitudes and laws in physics, Galileo invoked the 
idea that the «Book of Nature» is written in the language of figures and numbers. “Its type 
letters”, he wrote, speaking of the Universe “are triangles, circles, and other geometrical 
figures, without which it would be impossible to a human being to understand a single world 
of it”. And he added that all properties of external bodies in nature can be attributed, in ulti-
mate analysis, to the notions of “magnitudes, figures, numbers, and slow or fast, and those 

                                           
7 Albert Lutman, in Paty (1989), pp 235. 
8 Paty, 1988 
9 For Galileo this language was basically geometry. The history of science shows that algebra took the place of 
geometry, in particular with the advent of the Newtonian mechanics base on the idea of instantaneous action at 
distance. 
10 Galileo, in Il Saggiatore (Galileo [1623]). 
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have effects on our sensorial perceptions, and are, so to speak, the true essence of the things” 
11. 

Within the Galilean exemplar, geometry maintains its status as nature’s preferential language, 
but now as a resort of thought for its theoretical structure. This process is outlined as a “ma-
thematical translation”, where the scientist is the translator owing to his capacity to traverse 
between both “languages”: that of nature and that of mathematics. Another scientist with an 
important role in this subject is Newton. For him, the laws of geometrical mechanics and gra-
vitation accomplish his intentions, which are directly asserted from his book’s title, The ma-
thematical principles of natural philosophy12. The mathematical principles, referenced in the 
title of his most widely acknowledged work, were related to a synthetic geometry, tributary, 
to some extent, of his conceptions concerning mathematization of mechanics and physical 
laws. Mathematics in mechanics was a consequence of the world’s neo-platonic conception, 
requiring to be described in terms of absolute, actual and mathematical concepts, as space, 
time and force among others. (Paty, 1999) 

The succeeding developments of mechanics, as in the works of Leonhard Euler, Alexis Clai-
raut and Jean le Rond d'Alembert in the XVIII century, although tributary of the original 
Newtonian approach, legitimize mathematization in other terms. The neo-platonic conception 
and fundamental mathematical greatness were substituted by a more neutral metaphysics that 
expunged the idea of force from the theoretical body of physics, among others. Subsequently, 
a tradition of “physics-mathematics” is installed, in which mathematical translation is proper-
ly constituted in physics mediation. Within this context, mathematization is conceived as in-
herent to the concepts and support for their construction. Ampère (XIX century) was a backer 
of this new type of conception, since his procedure intended to “choose the most radical 
mode of a conceptual approach of mathematization (of experimental knowledge)… of max-
imally curtailing the distance between the mathematical discourse and concrete data that he 
was destined to inform and elucidate”13. This tradition was implanted in physics research by 
use, demonstrating the symbolic intensity on its own, and currently reaching its greatest re-
finement through modern physics theories, where it is impossible to think empirically without 
the aid of highly sophisticated mathematical symbolism.  

Redish states that in physics, “the purpose [of using mathematics] is a representative meaning 
of systems rather than expressing abstract relationships” (Redish, 2005, page 1). A number of 
recent historical studies offer interesting examples of how this takes place. For example Silva 
and Pietrocola (submitted) studied how mathematics extracted from well defined domains in 
the XIX century served as basis for structuring electromagnetism. They exposed the way Wil-
liam Thomson, James C. Maxwell and others developed models and analogies to explain both 
electric and magnetic phenomena based on the existence of ether. Works by Thomson and 
Maxwell provide an interesting opportunity to evaluate the use of analogies in the construc-
tion of physical understanding. In this case, construction was done from material and formal 
analogies. In the first case, the analogy was based on the idea that electromagnetic ether was 
similar, as for example, an elastic solid. In the second case, the analogy was based on the fact 
that the mathematical formulation of known laws on thermal phenomena was the same that 
governed electromagnetic phenomenons. (Silva e Pietrocola, submitted). 
                                           
11 Paty, 1999, p. 9 
12 Newton, 1687. See also Whiteside [1970] 
13 Merleau-Ponty, in Paty 1988, pp 234, note 3. 
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In another historical episode, the choice of mathematical formalisms denotes the search for 
signification to appropriately interpret physical phenomenons. Silva & Martins (2002) have 
produced a historical study concerning the debate of choosing the best mathematical formal-
ism to organize the electromagnetic theory during the 19th century. The choice of vectorial 
formalism in opposition to the formalism of “quaternions” is grounded on arguments that 
include elegance and simplicity, but above all, the possibility for rigorous and faithful formu-
lations to the ideas in the electromagnetic theory. This sort of debate discards the idea that it 
was only about deciding between equivalent ideas. What was at stake at that time was the 
choice for a better adapted formalism to learn the essence of the electromagnetic phenome-
nons under study. The vector theory, for instance, lends its meanings and structure to the 
electromagnetic theory; i.e., we will apply that the nature of electromagnetic entities is given 
by the vector idea. The arrow above a letter, for example, E , indicates that the electrical field 
is a physical quantity with magnitude and direction14. The vector language has its own 
grammar, syntax and spelling which are the axioms, theorems, lemmas, rules and so on. 
When a physical concept, such as electrical field, is written as E , it also assumes all the rules 
of vector language. 

Paty emphasizes the constructive role of mathematics in physics with the following: “ the 
physical thought … is constituted by constructing its concepts from mathematical greatness: 
laden with a “physical”, “real” or “empiric” content, they retain what is essential of the for-
mal contents they were granted (or redeemed, in the case when Physics was the object of its 
formation), meaning its construction in the purest mathematical sense ” (Paty, 1999, Pag.1). 

 

MATHEMATICS AS THE LANGUAGE OF PHYSICS 

A productive manner of pondering over the relationships between mathematical language and 
teaching scientific knowledge was considering the historical evolution of thoughts of the nat-
ural world. As previously discussed, centuries, if not millennia, were necessary for scientific 
thought to find support in mathematized language15. From the Greeks to the French illumin-
ists, historical episodes reveal the difficulties scientific thought encountered to structure itself 
from geometry, algebra and other logical systems, striving to interpret natural phenomenons. 
Expecting that our students naturally incorporate the mathematical language as an instrument 
of scientific thought is to accredit the view that science merely describes an inherently orga-
nized world. It is to believe that the existence of mathematically structured theories on 
science prescinded previous stages, when the mathematical symbols did not yet represent 
concepts. Regarding this aspect, there are two important considerations. 

The first one concerns the fact that there is a very distinct rupture between the type of lan-
guage for regular everyday use and for science (Lemke 2002, Astolfi, 1994). Science is nei-
ther constructed nor communicated by language; oral speech or written language. If we con-
sider all of the processes of scientific production, from preliminary stages of knowledge, 
when consensus, certainties, convictions and norms had not yet been obtained, the scientists’ 
language was hybrid: incorporating aspects of common language and formalized language. 
Sutton distinguishes two types of language in science: interpretative language – during initial 

                                           
14 There are some tricks on the use of an arrow to represent vector quantities. There are two kinds of vector 
quantities (polar and axial), but just one symbol. For more details, see (Silva and Martins 2002).  
15 See Paty, 1989. 
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stages of research; and formal language in the final stages, when the constructive process is 
complete (Sutton, 1996). The final phases are emphasized in science teaching, distorting the 
various uses of language by scientists, hence inducing students to consider that a mere de-
scription of pre-existing facts was carried out. (Pietrocola, 2005) Such affirmation allow un-
derstanding why students associate the work of scientists more with discovery, than invention 
(Ryan and Aikenhead, 1992), and suppose that scientific truths pre-exist knowledge (Sully, 
1989). 

Lemke (1998a) adds that in the case of science, particularly of physics, there is a blend of 
verbal-typology and mathematics-topology meaning. The verbal-typological menaning, cha-
racteristic of spoken and written language, includes such discrete categories as hot and cold, 
linear momentum and angular momentum, above and below, small and big, and fast and 
slow. However, the topogical meaning, characteristic of formal language (generally scientif-
ic), includes continuous categories, such as temperature, distance, time, volume, velocity, etc. 
It is probable that science, upon dealing with phenomenons as displacement of bodies, flow-
ing of waters and passing of time, was confronted with a limitation of discrete categories of 
common language and constructed, historically, a language based on continuous categories. 
(Lemke, 1998a). By constructing linguistic bridges between both categories, scientists were 
able to accurately deal with phenomena such as as the launching of projectiles and the oscil-
lation of a pendulum. In describing such phenomena, ideas such as, for example, fast and 
slow were translated by mathematical relationships, where velocities increase and decrease 
with time. Thus, adapting the language of science involves the skill of using both types of 
verbal components: typology and topologic. Verbal discourse mathematical associations, 
visual and graphical representations must be integrated in such a manner as to interpret cor-
rectly the physical world. (Belucci and Carvalho, 2005). 

It is absorbing to note how the complex process of integration between common and scientif-
ic languages, which characterize the constructive process of scientific knowledge, is hastily 
forgotten within science. The synthetic power of mathematical language and of the relation-
ships produced between the topologic categories provides scientists with a comfortable op-
erational representation, that can, temporarily, free them from the idiosyncrasy of the typo-
logical categories of common language. It would be as if, through mathematized representa-
tion, the physicist could “see” what is taking place, even when dealing with phenomenons far 
from the senses, as in the molecules of heated gas or the electrons in a current carrying con-
ductor. (Roth, 2003) Language standardizes and disappears from the initial phases of re-
search, where language is less reliable and subject to inaccuracies, approximations and doubts 
(Halliday and Martin, 1993; Sutton, 1996, Pietrocola, 2003). 
Vigostiki, describing the pre-history of language, provides arguments very close to those 
mentioned earlier (Vigotsky, 1985). He states that a child can develop spoken language on his 
own. However, written language is artificial; therefore, needs to be taught. He also adds that, 
traditionally, teaching writing was performed technically. Such perception of teaching lan-
guage as a technique is valid up to the present, and not only for written language but for ma-
thematical language in science as well. Teachers believe that due to students operationally 
commanding some mathematical systems, such as functions, geometry, Cartesian coordi-
nates, etc. they are adept at dealing with physical phenomenons (Redish, 2005). This prompts 
them to consider that technical mastery of mathematics is sufficient for the scientific thought 
in grasping the physical world. They fail to remember that scientific thought does not ma-
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thematically describe the world, but initially interprets it to later describe it (Poincaré, 1897; 
Bachelard, 1938).   

Written language and mathematical language are specific systems of symbols and signs, 
which beyond its technical dimension, represent ideas that transcend its internal meanings – 
both languages are second order symbolisms. In written language, signs represent sounds and 
words that reproduce speech, which are signs of associations and entities of the world. In 
such a case, speech is the intermediary link between the world and written words. In the ma-
thematical language used in physics, mathematical symbols and signs represent concepts, 
which represent objects of the scientific world. In both languages, the continuous use is di-
rectly connected to the world’s entities and the relationships it intends to represent. That is, 
habitual practice makes such languages become first order concerning the world. Once this 
takes place, thought no longer takes into account the intermediary stage of mathematical 
symbols, but adapts mathematical language as a structure directly related to that part of the 
world’s functionality that it intends to represent. Subsequently, mathematical language be-
comes structural to scientific thought, hence enabling the organization of knowledge. 16  
Physicists do not solely think of using common language (colloquial), but make use also of 
matrix language, functions of probabilities, etc., which serve to represent atoms and mole-
cules. Cosmologists organize thought in agreement with the dictates of tensorial language. 
Chemists, biologists, and even economists, employ specific mathematical languages to deal 
with their specific areas. For most of today’s scientists there are no alternatives: the important 
problems and solutions must be expressed mathematically, that is, in agreement with deter-
mined mathematical languages firmly established by use. 

 

DIDACTIC-PEDAGOGIC IMPLICATIONS 

Mathematics is an essential part of the necessary knowledge to learn physics. Two modes can 
be underscored by which teaching mathematics in physics allows learning the physical con-
tents. The first one is grounded on the technical domain of mathematical systems, such as 
operations with algorithms, construction of graphics, solution of equations, etc. We consider 
such characteristics as being connected to the internal context of mathematical knowledge 
and will designate them as technical skills, in the sense of being able to deal with specific 
rules and properties of mathematical systems. The second one is based on the capacity of 
employing the mathematical knowledge for structuring physical situations. We consider such 
characteristic to be connected to the organizational use of mathematics in external domains 
and will designate them as structural skills. There is a myth about the relationship between 
physics teaching and mathematics teaching that can be overturned when there is clarity con-
cerning the differences between both of these skills – while the first skill can be obtained out-
side physics education, meaning, in subjects exclusively mathematics; the second one cannot 
be. The capacity of dealing with mathematics within its own situations does not warrant the 
capacity of using it in other areas of knowledge, as physics. In other words, to have technical 
command of mathematics does not guarantee the capacity of employing it to structure 
thought in other domains.  

This implies that there must be a didactic-pedagogical intention in preparing the physics stu-
dents to make structural use of mathematics. The authors of didactic books, the formulators 
                                           
16 For more about the structural function of mathematics in Physics see Pietrocola, 2002 and 2005 
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of curricular programs and physics teachers in general should have clarity with regards to 
such a need, so as to not underestimate the resulting difficulties. The fact that technical skills 
in mathematics do not convert into structural skills generates pedagogical-epistemological 
obstacles. These types of problems have been dealt with in science didactic literature by 
means of the concept of objective-obstacle (Martinand 1986).  The structural skill is an ob-
stacle since not attaining it, thus remaining at the technical level, prevents complete appropri-
ation of physics knowledge. Structuring thought in students based on the languages that ma-
thematics offers becomes an objective to be pursued by physics didactics. 

With regards to contemporary research, the area of mathematical modeling (Bassanezi, 1994) 
proffers works that serves the proposal of endowing thought with structural skill. For the sub-
ject matter of teaching physics, mathematical modeling needs to explicitly incorporate the 
empirical domain, that is, involve experimental activities. A suitable modeling activity should 
inevitably be concerned with passing on “raw” data contained in a phenomenon for its con-
ceptual representation. In this direction, Pinheiro et al. (2001) and Pinheiro (1996) submitted 
activity proposals to introduce mathematical modeling practices to students of primary educa-
tion using natural phenomena by means of experimental activities. In this article’s addendum 
we presented one of these teaching activities contextualized for a pre-university level work. 
This type of proposal faces difficulties if it is to be implemented in the scholastic context, 
given that often it collides with the rigidity of academic curriculums, the excessive context 
emphasis to be transmitted in the subjects and the traditional manner of conceiving the teach-
ing of physics at this level as consequences of single-solution closed problems.  

Another manner of addressing the structural skill with mathematics is to modify the way 
problem solving is approached in physics. Redish (2005) discusses the critical stages to be 
considered in mathematics in solving physical problems. One of these stages is to stimulate 
the students to work with symbols in limiting situations. According to his argument: 

“Taking the limiting case of either of the two masses [in a half-Atwood’s machine] going to 
zero (or infinity) is an example of considering an ensemble of experiments rather than just a 
single one and is also a nice example of physicists’ willingness to treat constants (the masses) 
as variables.” (ibd, pg. 4) 

 

FINAL CONSIDERATIONS 

Although other living entities also communicate, creative language that interprets, projects 
ideas, and provides the means of argument belongs exclusively to human beings. Endowed 
with such use of language, the human mind surpasses the world that is instantly accessible to 
perception and transcends limits in space and time. Thus, what separates us from other living 
beings is not language as a form of communication, but the capacity we have of creating a 
world of ideas through language. The universe of words of a human being is ten thousand 
times more expansive than a Rhesus monkey. Such difference reflects our capacity to im-
agine that which we cannot touch, cannot see or access with our senses and which enables us 
to construct a rich world of ideas. That is, our thoughts are expressed through words that we 
construct and then use them to communicate with and through them, without intermediation. 
Words are codified ideas and comprise the raw material of our thoughts. By integrating 
words in sentences, we express ideas and thoughts. The human language is evidence of how 
thought deals with ideas, articulating one into another in the construction of meaning.  
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There is not always a direct correlation between meaning in the world of ideas with those of 
the real world. In this case, we are in exclusive command of the research that moves our 
thought towards what is new. In this consensus, language must be understood as the mode we 
have to structure thought, while striving to interpret the phenomena of the world that call our 
attention. Science has sophisticated the use of language, determining special modalities for 
each research stage. More interpretative language fits well the initial moments, when prob-
lems and doubts are inevitably part of the process; more descriptive language is well suited 
for the safer domains studied, where the answers often surpass the question initially formu-
lated; and finally, mathematized language is portrayed when it partakes of moments when 
science is able to transcend a second order language and starts to reason from its own con-
cepts included in formal systems. In this final stage, a type of thought is activated, which is 
characteristic of science. Within it, thought departs from the immediate world and releases 
itself to safely prospect the limits of the known world, achieving intimacy with matter, the 
limits of the Universe, the borderlands of human perception. Bachelard had already stated 
that the solidity of mathematics resides in the fact that it is a safe thought of its language 17.  

Enabling students to perceive the possibilities that scientific thought acquires by means of 
mathematical language should be part of the objectives of scientific education. However, it 
must be clear that restricted emphasis on technical command of such language is not enough. 
It is necessary to teach students to learn the world through the many languages of science, 
showing the importance of the role and function performed by each of those languages. Par-
ticularly, mathematics is increasingly becoming a language of many branches of science. 
That being the case, it is important that in physics teaching the role of mathematics be con-
templated in structuring thought. Without this, it will be difficult for recent knowledge pro-
duced by science to become the object of education and learning in schools.  

 

                                           
17 Cited by Paty, 1988. 
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