Correção do Relatório Dirigido 1ª Experiência: Introdução à Teoria de Medidas

Critérios de Correção:

- Propagação de Incertezas: volume, densidade e período do pêndulo;
- Cálculo do período médio e da incerteza;
- Discussão e Conclusão;

Notas:

- Acertar os 3 itens => Conceito 2
- Acertar 2 itens => Conceito 1
- Acertar 1 item ou nada => Conceito 0

O que era esperado?

- Propagação de Incertezas: volume, densidade e período do pêndulo
 - Utilização correta do método de propagação de incertezas, utilizando os conceitos propostos (apostila de Conceitos Básicos de Teoria de erros).
 - Apresentar o valor mensurado com sua respectiva incerteza, e a quantidade correta de algarismos significativos.
- Cálculo do período médio e da incerteza;
 - Utilização correta do métodos estatísticos (apostila de Conceitos Básicos de Teoria de erros).
 - Apresentar o valor mensurado com sua respectiva incerteza, e a quantidade correta de algarismos significativos.

O que era esperado?

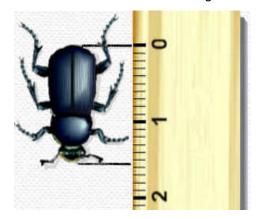
Discussão

- Analisar o procedimento experimental e os instrumentos utilizados, criticando-os com relação à sua precisão e qualidade final dos resultados obtidos.
- Acordo entre resultados obtidos na experiência e valores experimentais obtidos de outras fontes ou valores de referência.

Conclusão

- A conclusão deve formar um seção independente do restante do relatório e completa em si, ou seja, se uma outra pessoa ler somente a conclusão do seu trabalho, ela terá uma idéia do que foi feito, dos resultados e conclusões obtidas.
- É essencial que se apresentem as conclusões às quais os dados permitem chegar, frente aos objetivos que foram colocados na introdução de cada experimento.

1) Suponha que se deseje medir o tamanho do besouro da figura



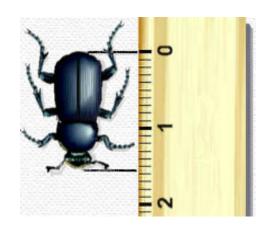
Uma vez decidido o que caracteriza o tamanho do besouro, qual das alternativas abaixo melhor caracteriza a medida do tamanho do besouro?

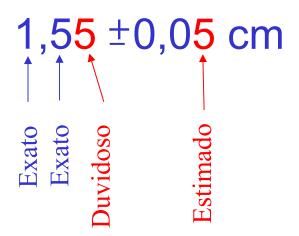
- a) Entre 0 e 1 cm
- b) Entre 1 e 2 cm
- c) Entre 1,5 e 1,6 cm
- d) Entre 1,54 e 1,56 cm -
- e) Entre 1,546 e 1,547 cm

2) Medindo o diâmetro de uma moeda

- a) Entre 0 e 2 cm
- b) Entre 1 e 2 cm
- c) Entre 1,9 e 2,0 cm
- d) Entre 1,92 e 1,94 cm
- e) Entre 1,935 e 1,945 cm

Como expressar o resultado das medidas feitas?

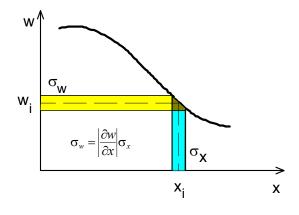




 $1,93\pm0,05$ cm

Propagação de incertezas

O problema pode ser posto da seguinte maneira: dada uma função w = w(x, y, z) onde x, y, z são grandezas experimentais com incertezas dadas por σ_x , σ_y , σ_z e independentes entre si, quanto vale σ_w ? Para simplificar suponha w apenas função de x. No gráfico abaixo está representando w(x).



A incerteza de w, neste gráfico, pode ser obtida pela simples projeção da incerteza de x. Para pequenos intervalos no eixo x, temos em primeira ordem:

$$\sigma_w = \left| \frac{\partial w}{\partial x} \right| \sigma_x$$

Para mais de uma variável independentes entre si, podemos escrever uma fórmula geral:

$$\sigma_w^2 = \left(\frac{\partial w}{\partial x}\right)^2 \sigma_x^2 + \left(\frac{\partial w}{\partial y}\right)^2 \sigma_y^2 + \left(\frac{\partial w}{\partial z}\right)^2 \sigma_z^2 + \dots$$

Quadro 2.1. RESUMO DE FÓRMULAS PARA PROPAGAÇÃO DE INCERTEZAS

w = w (x, y,)	Expressões para σ _W
w = x ± y soma e subtração	$\sigma_w^2 = \sigma_x^2 + \sigma_y^2$
w = axy multiplicação	$\left(\frac{\sigma_w}{w}\right)^2 = \left(\frac{\sigma_x}{x}\right)^2 + \left(\frac{\sigma_y}{y}\right)^2$
w = a (y / x) divisão	$\left(\frac{\sigma_w}{w}\right)^2 = \left(\frac{\sigma_x}{x}\right)^2 + \left(\frac{\sigma_y}{y}\right)^2$
w = x ^m potência simples	$\left \frac{\sigma_w}{w} \right = \left m \frac{\sigma_x}{x} \right $
w = ax multiplicação por constante	$\left \frac{\sigma_w}{w} \right = \left \frac{\sigma_x}{x} \right \text{ou} \sigma_w = a \sigma_x$
w = ax + b	$\left \frac{\sigma_w}{w} \right = \left \frac{\sigma_x}{x} \right \text{ou} \sigma_w = a \sigma_x$
w = ax ^p y ^q	$\left(\frac{\sigma_w}{w}\right)^2 = \left(p\frac{\sigma_x}{x}\right)^2 + \left(q\frac{\sigma_y}{y}\right)^2$
w = a sen(bx) função qualquer aplicar a definição	$\sigma_w = ab \cos(bx) \sigma_x b\sigma_x$ em radianos

Médias e Desvio Padrão

Quando fazemos uma série de n medidas de uma grandeza x, para representar o resultado, utilizamos o valor médio m que é dado por:

$$m = \frac{1}{n} \sum_{i=1}^{n} x_i$$

A variabilidade de cada medida é dada pelo Desvio Padrão σ

$$\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - m)^2}$$

A variabilidade da média é dada pelo Desvio Padrão da Média σ_{m}

$$\sigma_m = \sqrt{\frac{1}{(n-1)n} \sum_{i=1}^{n} (x_i - m)^2} = \frac{\sigma}{\sqrt{n}}$$

Histograma

Uma maneira gráfica de analisar estatisticamente esses dados é através de um histograma ou gráfico de barras. Neste tipo de gráfico, para uma visualização mais direta, o eixo x é divido em intervalos iguais que se chamam celas.

Há 3 grandezas que podem ser graficadas na forma de histograma: a *freqüência absoluta*, fa, a *freqüência relativa*, fr, e a *densidade de probabilidade*, dp. A freqüência absoluta é o gráfico onde o eixo y representa a quantidade absoluta de termos dentro de uma cela. Freqüência relativa tem no eixo y a fração da quantidade de termos dentro de uma cela. No gráfico de densidade de probabilidade $dP = fr/\Delta x$, grafica-se no eixo y o resultado da divisão de fr pelo tamanho da cela, Δx . Neste caso a área do gráfico é a probabilidade de ocorrer o valor contido na cela ou intervalo (daí o nome densidade de probabilidade).

Tabela 1: Tempos de queda de um corpo. (ms)

4.93	0.77	7.01
2.21	6.00	5.17
4.12	5.40	2.56
3.83		

Tabela 2: Análise estatística dos tempos.

Cela	Intervalo	f_a	$f_r = f_a/n$	$dp=f_r/\Delta x$
1	0,00 2,00	1	0,10	0,05
2	2,00 4,00	3	0,30	0,15
3	4,00 6,00	4	0,40	0,20
4	6,00 8,00	2	0,20	0,10

Histograma dos tempos de queda de um corpo.

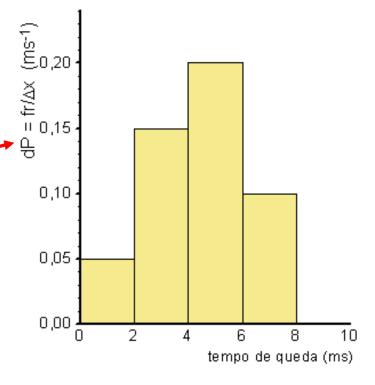


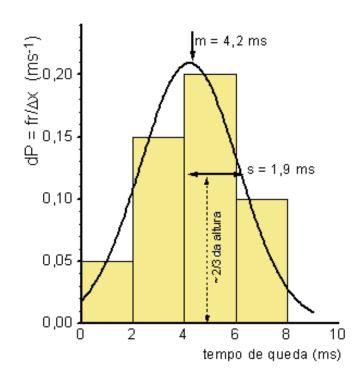
Tabela 1: Tempos de queda de um corpo. (ms)

4.93	0.77	7.01
2.21	6.00	5.17
4.12	5.40	2.56
3.83		

$$m = \frac{1}{n} \sum_{i=1}^{n} x_i = 4, 2ms$$

$$\sigma = \sqrt{\frac{1}{n-1}} \sum_{i=1}^{n} (x_i - m)^2 = 1,9ms$$

Histograma dos tempos de queda de um corpo.



Função Gaussiana

Para valores aleatórios distribuidos de acordo com a lei Normal com média μ e desvio padrão σ , o histograma de dP pode ser modelado por uma curva contínua, também denominada Gaussiana, dada por:

$$dP = \left(\frac{f_r}{\Delta x}\right) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(\frac{-0.5*(x-\mu)^2}{\sigma^2}\right)$$

Frequência das notas da prova P1.

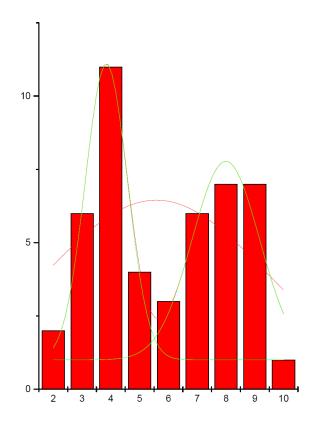
1,5 – 2,5	2
2,5-3,5	6
3,5 – 4,5	11
4,5 – 5,5	4
5,5 – 6,5	3
6,5 – 7,5	6
7,5 – 8,5	7
8,5 – 9,5	7
9,5 – 10,5	1

$$m = \frac{1}{n} \sum_{i=1}^{n} x_i = 5,9$$

$$\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - m)^2} = 2,3$$

Notas da prova P1

Histograma das notas da prova P1.



Ajuste com 2 gaussianas

1 18,475 3,8449 1,4590 10,104 2 19,932 7,9950 2,3460 6,7791	Peak	Area	Center	Width	Height
	1 2	· · · · · · · · · · · · · · · · · · ·	,	,	,