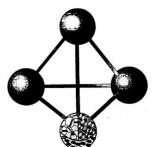
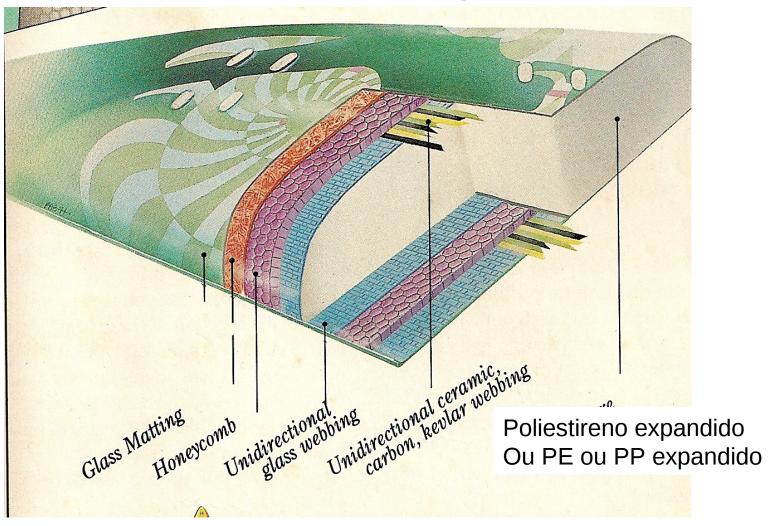

Materiais Compósitos

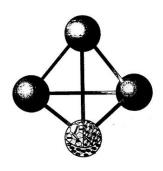
Autor: Fernando Landgraf

Baseado no Cap. 17 do Callister.



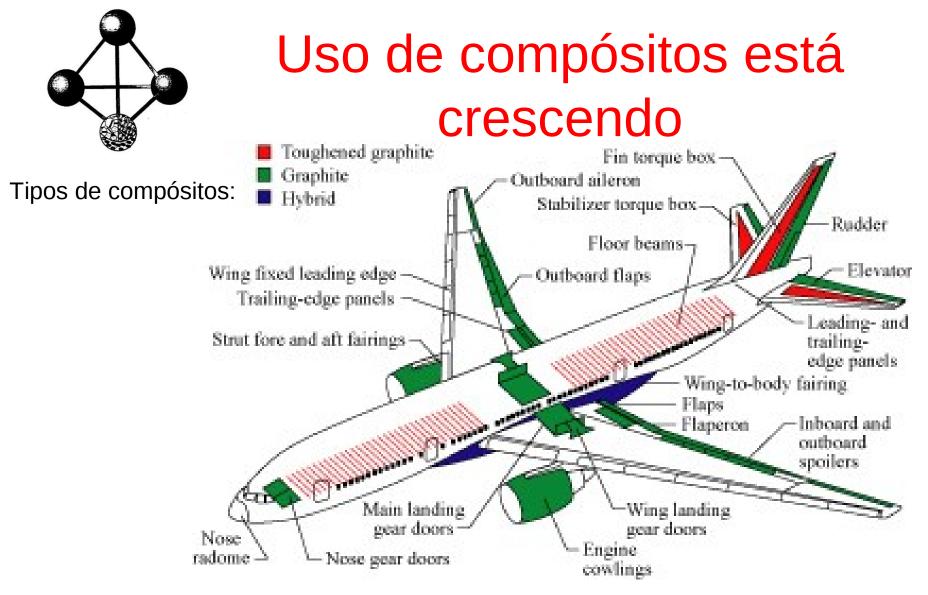
Epoxi-fibra de Carbono, diâmetro de fibra 7 µm. Foto de Gerson Marinucci, IPEN.



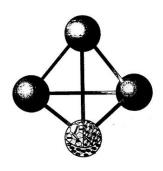

Compósitos

 Princípio da ação combinada: Material multifásico cujas propriedades sejam uma combinação benéfica (sinergia) das propriedades das duas ou mais fases que o constituem.

Prancha de windsurf é um compósito


Exemplos naturais

Ossos


• colágeno, (proteína forte mas mole), junto com apatita (resistente, rígido, mas frágil)

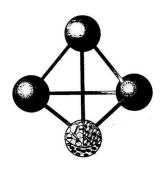
Madeira

• fibras de celulose resistentes e flexíveis, envolvidas por lignina, mais rígida.

admite-se que o Boeing 777 tenha 10% do peso em materiais compósitos http://oea.larc.nasa.gov/PAIS/Concept2Reality/composites.html

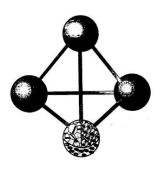
Estrutura do compósito

Compósitos de engenharia costumam ter

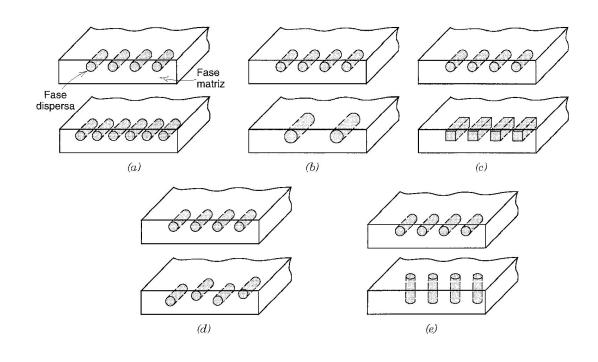

Fase matriz + fase dispersa

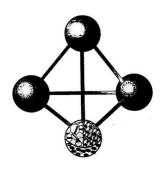
Fase matriz:

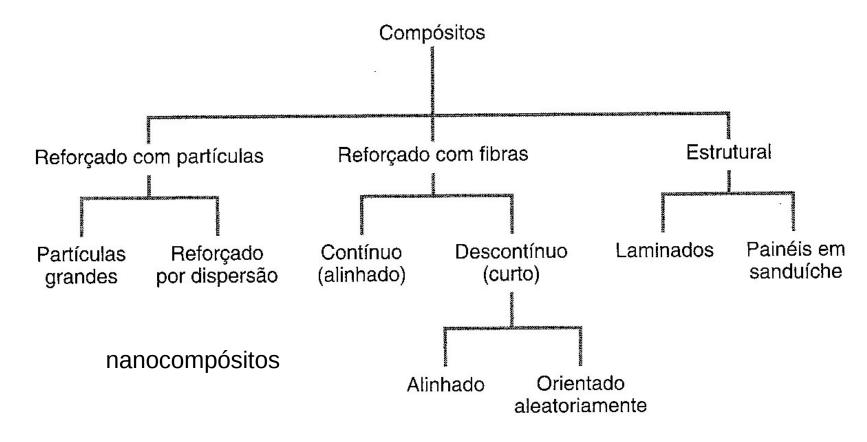
polímero (PMC), cerâmica (CMC) ou metal (MMC)

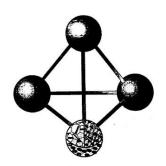

Fase dispersa:

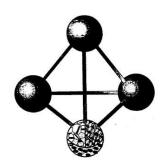
inúmeras possibilidades


Relação estrutura - propriedade


- Propriedades do compósito dependem:
 - propriedades da fase matriz e da fase dispersa
 - Da natureza da interface matriz-fase dispersa
 - Da geometria da fase dispersa

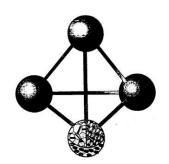

Estrutura dos compósitos


- Propriedades
 dependem da
 geometria da fase
 dispersa
 - Concentração (a)
 - Tamanho (b)
 - Forma (c)
 - Distribuição (d)
 - Orientação (e)


Classificação dos compósitos

Compósitos reforçados com partículas

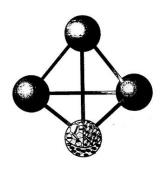
- Partículas grandes: maiores que ~1µm
 - Matriz transfere parte da carga à fase dispersa
- Dispersão: ~ 0,01 a 0,1 μm
 - Aumento de resistência se dá por interações a nível atômico ou molecular (assunto do tópico 3).


Compósitos com partículas grandes

- Regra das misturas:
 - Propriedade dependem das frações volumétricas das fases

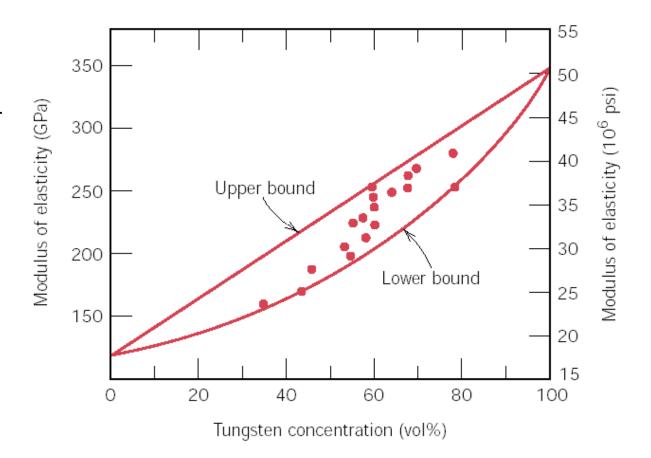
Módulo de elasticidade varia entre

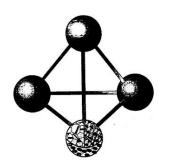
$$E_c(u) = E_m V_m + E_p V_p$$


$$E_c(l) = \frac{E_m E_p}{V_m E_p + V_p E_m}$$

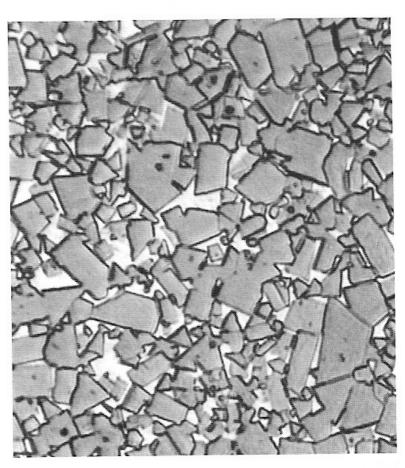
Relembrando Módulo de elasticidade

 Calcular o módulo de elasticidade de uma liga de alumínio, com base nos seguintes dados:

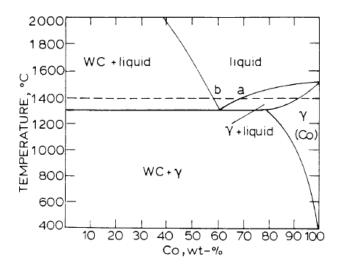

σ (MPa)	3
0	0
300	0,0041
600	0,0082
700	0,10



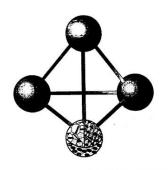
Regra de misturas


Partículas de W Em cobre:

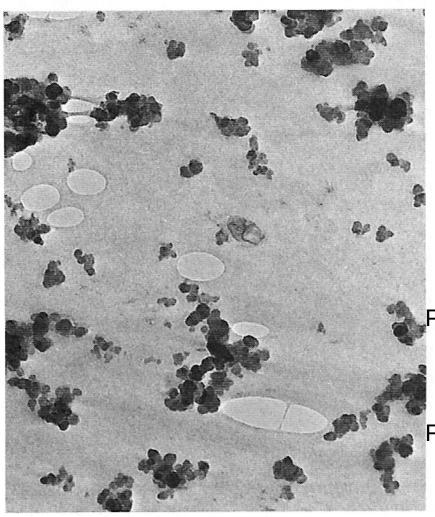
Existe limite superior E limite inferior Para E



Exemplo de MMC: broca de metalduro



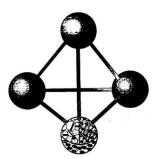
WC confere a dureza e a resistência ao desgaste necessários ao corte de concreto. Cobalto confere tenacidade.



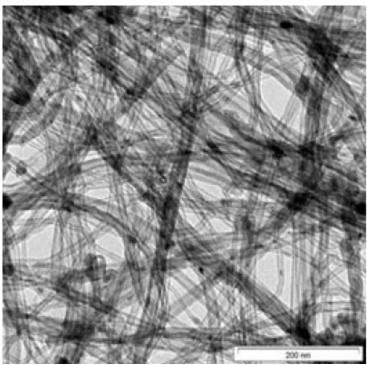
Partículas de WC em matriz de Co, MO

Partículas medem ~10 µm

Exemplo de PMC: borracha do pneu


Matriz: elastômero

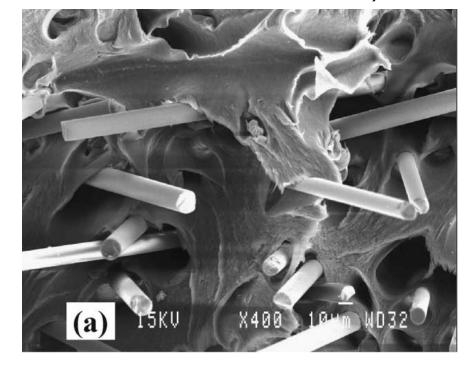
Partículas: negro de fumo (carbono), MET


partículas filtram UV e aumentam resistência mecânica

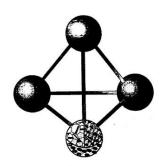
Partículas de negro de fumo cada uma mede de 20 a 50nm, mas ocorrem aglomeradas.

Fase elipsoidal é bolsão de água na borracha

Exemplo de PMC: Compósitos com Nylon

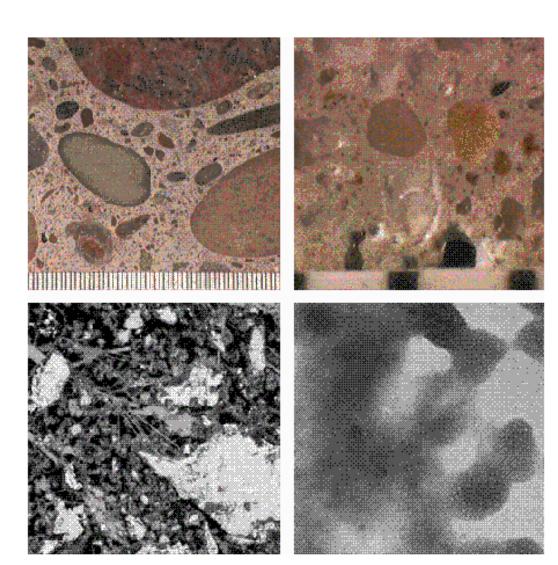


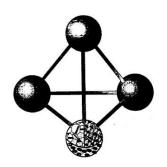
Matriz: Nylon-6


Reforço: nanotubos de carbono, MET

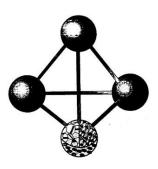
(em desenvolvimento,

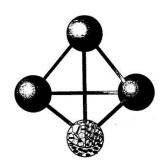
condutividade térmica, resist. mecânica)




Matriz: Nylon-6,6 + SEBS-g-MA Reforço: fibra de vidro, MEV (aplicação automobilística)

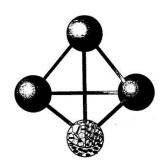
Exemplo de CMC: concreto


- Matriz: cimento+ água
- Partículas: areia e brita

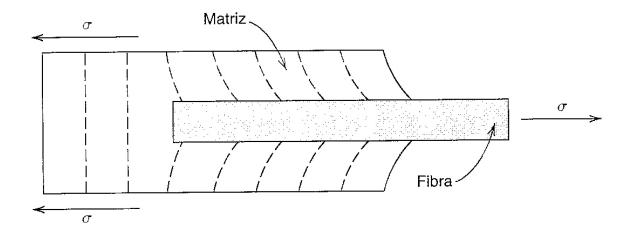


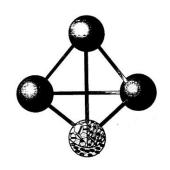
Compósitos reforçados por dispersão

- Usado nos MMC, quando é necessária alta resistência em alta T, fluência (indústria espacial)
- chamados de ODS- Oxide Dispersion Strengthened:
 - Adição de óxidos finos
 - 3% de óxido de tório em Ni: é o níquel TD
 - Alumina em alumínio (sinterização de pós de alumínio cobertos por camada de Al₂O₃)



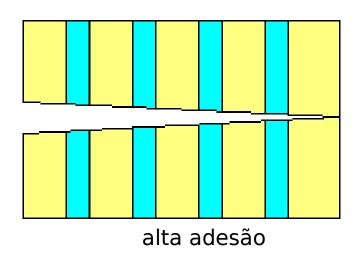
- Fim da primeira aula.
- Ler capítulo 17 do Callister.

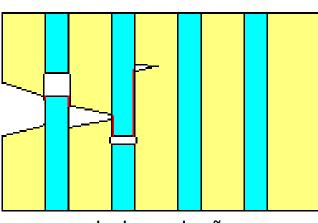

Compósitos reforçados com fibras


- São os mais comuns.
- Vantagem é alta resistência ou alta rigidez da fibra, aliado à baixa densidade da matriz.
 - Resistência a tração σ_f
 - Módulo de elasticidade E
 - Densidade relativa
 d
 - Resistência específica σ_f/d
 - Módulo específico E/d

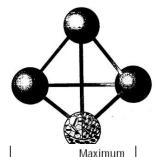
Influência do comprimento da fibra

Resistência depende do quanto a carga é transferida para a fibra Ligação interfacial entre fibra e matriz cessa na ponta da fibra, Deformando a matriz naquela região.

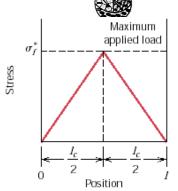


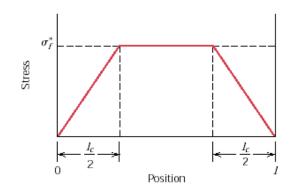


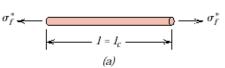
Influência do comprimento da fibra

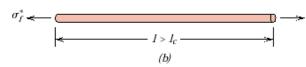

Compósitos reforçados com fibras requerem uma adesão moderada entre matriz e fibra :

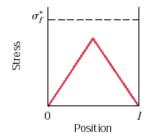
- uma alta adesão entre as duas fases confere boa resistência mecânica pela transferência eficiente de carga da matriz para as fibras, porém o material torna-se frágil.
- uma baixa adesão resulta em baixa resistência mecânica, mas a energia absorvida na fratura (tópico 3) aumenta por dissipação de energia durante o processo de descolamento da fibra (puxamento da fibra – fiber pullout)

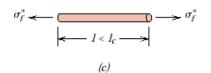


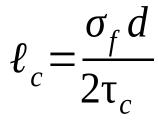


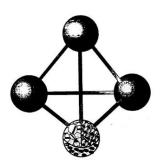

baixa adesão



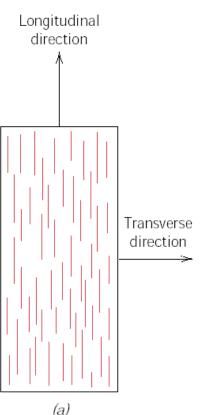

Influência do comprimento da fibra



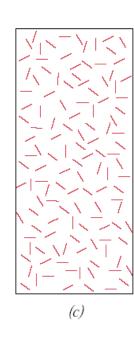




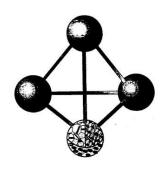
- . $\sigma_{\rm f}$ limite de resistencia da fibra
- . Tc resistência aocisalhamento da interface.d diâmetro da fibra

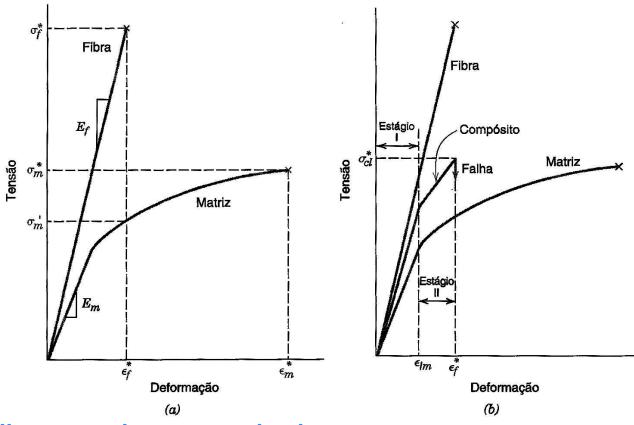

Em compósitos com fibra de vidro ou carbono, $\ell_c \sim 1 \text{mm}$ para d $\sim 1 \mu \text{m}$


"Fibras contínuas" : $\ell > 15 \; \ell_{\rm c}$ Se não, "fibras curtas"

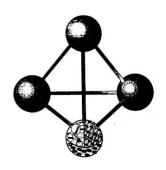


Fibras contínuas


- Quando o processo de fabricação garante que as fibras fiquem alinhadas, surge a **anisotropia** das propriedades:
- Propriedades dependem da direção em que aplico carga, em relação à direção das fibras



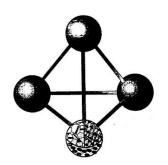
Fibra curta: alinhada ou aleatória



Carregamento longitudinal em fibras contínuas e alinhadas

Estágio I: fibra e matriz escoam elasticamente

Estágio II: matriz entra em regime plástico. Falha em ε_{t}^{*} mas pode não ser catastrófico


Cálculo de E do compósito,

para carregamento longitudinal

$$E_c(I) = E_m V_m + E_f V_f$$

Para carregamento na transversal

$$E_c(t) = \frac{E_m E_f}{V_m E_f + V_f E_m}$$

Exercício 2

1 . A Figura 1 representa duas configurações possíveis de carregamento em compósitos reforçados por fibra: longitudinal (a) e transversal (b). Deduza para cada caso a relação entre o módulo de Young do compósito na configuração longitudinal (E_{\parallel}) e transversal (E_{\perp}) em função das propriedades do reforço (E_f) e da matriz (E_m) e de suas respectivas frações volumétricas $(V_r$ e $V_m)$:

$$E_{\parallel} = V_f E_f + V_m E_m \tag{1a}$$

е

$$\frac{1}{E_{\perp}} = \frac{V_f}{E_f} + \frac{V_m}{E_m} \tag{1b}$$

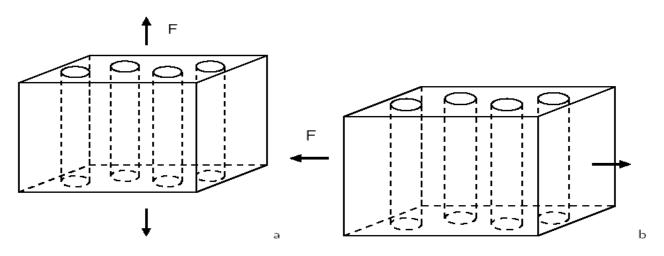
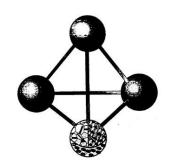
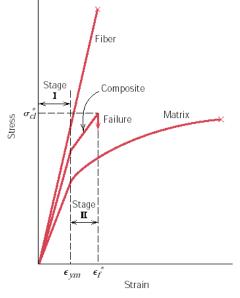
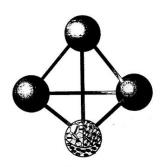



Figura 1: Modos de carregamento de compósitos reforçados por fibras contínuas. (a) longitudinal e (b) transversal.


 No primeiro caso considere que as deformações são idênticas na matriz e na fibra (condição de isodeformação, isostrain), no segundo, que as tensões são idênticas na matriz e na fibra (condição de isotensão, isostress).

Anisotropia do limite de resistência


$$\sigma_{cl} = \sigma'_{m} (1 - V_{f}) + \sigma_{f} V_{f}$$

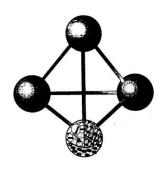
Limite de resistência do compósito na longitudinal Pode ser estimado com base no gráfico, Mas na transversal é muito menor.

Concentração de fibra 50%

material	LR tração L LR tração	
	(MPa)	(MPa)
Vidro-poliester	700	20
Carbono-epóxi	1000	35
poliaramida-epóxi	1200	20

Exercício 17.11 (Callister)

 Quer-se produzir um compósito com fibras contínuas e alinhadas, tal que ela consista em 30% volume de fibras aramida e 70% volume de uma matriz a base de policarbonato (PC); as características mecânicas desses dois materiais são:

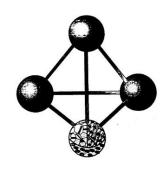

Material E (GPa) LR (MPa)

• Fibras aramida 131 3600

Policarbonato
 2,4
 65

Ainda, a tensão sobre a matriz de PC, quando as fibras aramida falham, é de 45MPa.

Para esse compósito, calcule o limite de resistência à tração longitudinal

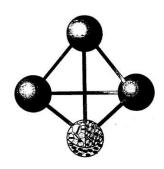

A fase fibra

3 classes

Whiskers Monocristais, altíssima resistência, caros

FibrasPolicristais ou amorfos, finas

arames
 Diâmetros dezenas de microns
 ex.: arame nos pneus

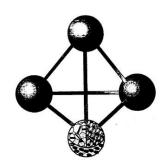


A fase Fibra

Tabela 17.4 Características de Diversos Materiais Usados para Reforço com Fibras

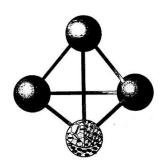
Material	Densidade Relativa	Limite de Resistência à Tração [GPa (10º psi)]	Resistência Específica (GPa)	Módulo de Elasticidade [GPa (10º psi)]	Módu lo Específico (G
		Uísqueres			
Grafita	2,2	20 (3)	9,1	700 (100)	318
Nitreto de silício	3,2	5-7 (0,75-1,0)	1,56-2,2	350-380 (50-55)	109-118
Óxido de alumínio	4,0	10-20 (1-3)	2,5-5,0	700-1500 (100-220)	1 7 5-3 75
Carbeto de silício	3,2	(3)	6,25	480 (70)	150
		Fibras			
Óxido de alumínio	3,95	1,38 (0,2)	0,35	379 (55)	96
Aramida (Kevlar 49)	1,44	3,6-4,1 (0,525-0,600)	2,5-2,85	131 (19)	91
Carbono ^a	1,78-2,15	1,5-4,8 (0,22-0,70)	0,70-2,70	228-724 (32-100)	106-407
Vidro E (E-Glass)	2,58	3,45 (0,5)	1,34	72,5 (10,5)	28,1
Boro	2,57	3,6 (0,52)	1,40	400 (60)	156
Carbeto de silício	3,0	3,9 (0,57)	1,30	400 (60)	133
JHMWPE (Spectra 900) (Polietileno com Peso Molecular Ultra-Alto)	0,97	2,6 (0,38)	2,68	117 (17)	121
		Arames Metálicos			1000
Aço de alta resistência	7,9	2,39 (0,35)	0,30	210 (30)	26,6
Molibdênio	10,2	2,2 (0,32)	0,22	324 (47)	31,8
l'ungstênio	19,3	2,89 (0,42)	0,15	407 (59)	21,1

[&]quot;O termo "carbono", em vez de "grafita", é usado para identificar essas fibras, uma vez que elas são compostas por regiões cristalinas de grafita e também por material não-cristalino e áreas com desalinhamento do cristal.

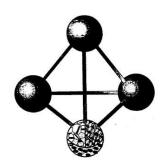

Compósitos com matriz polimérica

Matrizes:

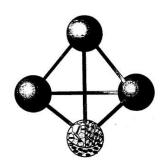
- Termorígidas: Poliésteres e vinil-ésteres, Epóxi, fenólicas
- Termoplásticas: PA, PEEK, PPS, PEI
- (poliamida, polieteretercetona, poli(sulfeto de fenileno), Polieterimida)


Reforços

- fibra de vidro (GFRP)
- fibra de carbono (CFRP)
- fibras aramidas (poliaramidas)

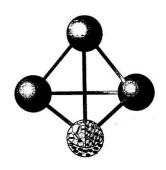

Compósitos de fibra de vidro

- Vantagens
 - Alto σ_f^* (3500 MPa), barato, inerte
- Usos
 - Carcaças automotivas e marítimas
 - Recipientes de armazenamento
- Limitações
 - Baixa rigidez (70 GPa)
 - Tmax < 200° C


Fabricação da fibra de vidro

- 55%SiO2, 16%CaO, 15%Al2O3, 10%B2O5 e 4%MgO.
- Diâmetros entre 3 e 20µm.
- Muito sensível a defeitos superficiais da fibra
- Exposição da fibra à atmosfera normal deteriora superfície
- São recobertas com capa protetora
- Algumas capas devem ser removidas antes da fabricação do compósito.
- Podem ser usadas na forma de fios, mantas e tecidos (ver amostras)

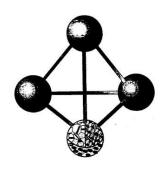
Compósitos de fibras aramida ("kevlar")


- Vantagens
 - Baixa densidade relativa (1,44)
 - Alta tenacidade
 - Dutilidade permite tecelagem
- Usos
 - Blindagem balística
 - Artigos esportivos, pneus
- Limitações
 - Susceptíveis a ácidos e bases fortes
 - Baixa resistência à compressão
 - Custo (> fibra de vidro)

Fabricação das aramidas

- Poli-parafenileno-tereftalamida
- Moléculas rígidas são alinhadas ao longo da fibra

Ligações secundárias fortes e arquitetura com anéis benzênicos entre cadeias adjacentes conferem rigidez à fibra



Comparações entre compósitos de matriz epóxi

Tabela 17.5 Propriedades de Compósitos com Matriz de Epóxi Reforçados com Fibras Contínuas e Alinhadas de Vidro, Carbono e Aramidas nas Direções Longitudinal e Transversal. Em Todos os Casos a Fração Volumétrica da Fibra é de 0,60

Propriedade	Vidro [Vidro E (E-Glass)]	Carbono (Alta Resistência)	Aramida (Kevlar 49)
Densidade relativa	2,1	1,6	1,4
Módulo de tração			
Longitudinal [GPa (106 psi)]	45 (6,5)	145 (21)	76 (11)
Transversal [GPa (10 ⁶ psi)]	12 (1,8)	10 (1,5)	5,5 (0,8)
Limite de resistência à tração		3 80 5	5. 27 100 50
Longitudinal [MPa (ksi)]	1020 (150)	1240 (180)	1380 (200)
Transversal [MPa (ksi)]	40 (5,8)	41 (6)	30 (4,3)
Deformação no limite de resistência à tração			
Longitudinal	2,3	0,9	1,8
Fransversal	0,4	0,4	0,5

Fonte: Adaptado de R. F. Floral e S. T. Peters, "Composite Structures and Technologies", notas de sala de aula, 1989.

Processamento de compósitos reforçados com fibras

Pultrusão: produtos longos e seção transversal constante. mechas de fibras Usado com fibras de vidro, carbono e aramidas concentração entre 40 e 70% fibras

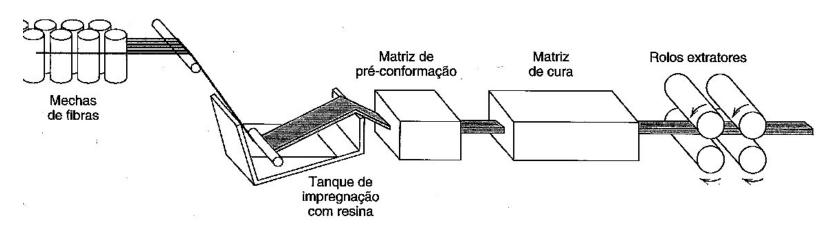
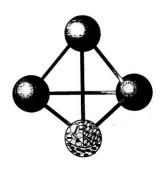
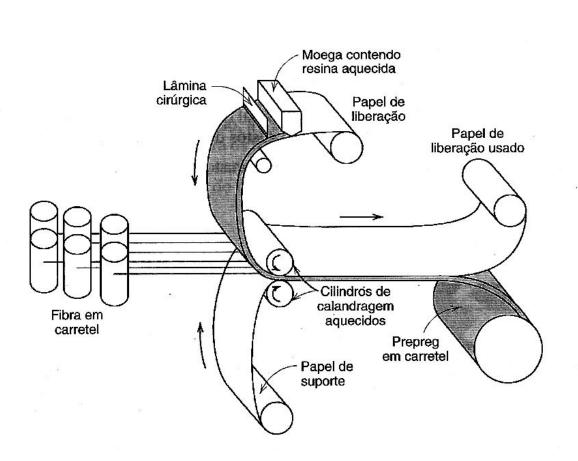
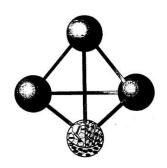
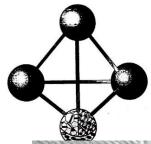




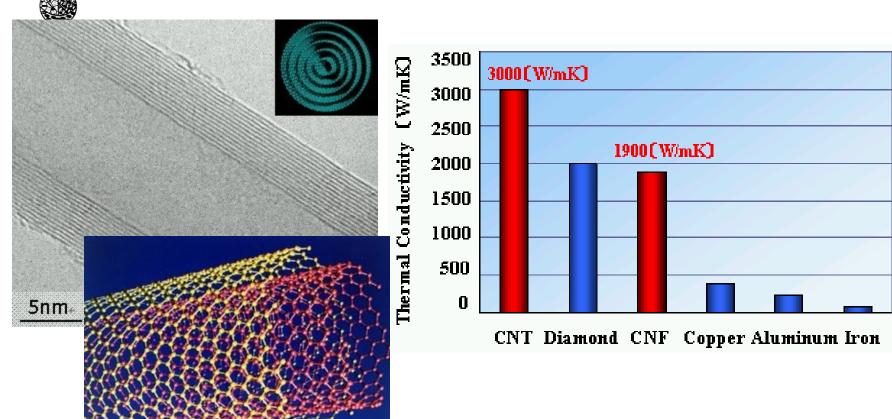
Fig. 17.12 Diagrama esquemático mostrando o processo de pultrusão.

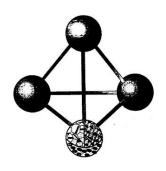


Processo Prepreg

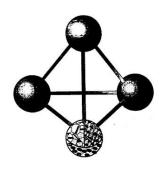
Fibras contínuas pré-impregnadas com resina parcialmente curada.






Outras aplicações de compósitos

- Elétricas
 - Cabo de cobre reforçado com aço
- Magnéticas
 - Pó de ferro em matriz isolante polimérica (aplicação nobre: imã de geladeira)
- Térmicas
 - Nanotubos de carbono


Nanotubos de carbono

Literatura

Capítulo 17 do W. Callister

Sites interessantes

- Amostras na aula: http://www.hurner.com.br
- Notícias: http://www.compositesnews.com/
- Ass. Bras. Mat. Compósitos: http://www.abmaco.org.br/
- http://www.jeccomposites.com/
- Nanotubos: http://depts.washington.edu/polylab/cn.html
- Saint Gobain: http://www.sgva.com/
- http://oea.larc.nasa.gov/PAIS/Concept2Reality/composites.html