
Análise e Interpretação dos Dados Coletados

Prof. Paulo C. Masiero Cap. 8

Processo de Experimentação

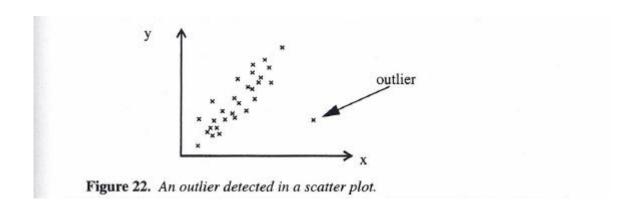
Análise dos Resultados

- Se possível, entreviste os participantes para obter feedback:
 - Sobre os artefatos
 - Sobre o processo experimental
 - Para capturar sua impressão sobre os resultados
- Revise os dados coletados para verificar se eles são úteis e válidos
- Organize os dados em conjuntos para análise de validade, exploração e teste das hipóteses
- Analise os dados com base em princípios estatísticos válidos
- Verifique se as hipóteses são aceitas ou rejeitadas
- O processo de análise pode ser iterativo.

Análise e interpretação dos resultados

Redução do conjunto de dados

Análise descritiva dos dados


Testes de hipóteses

Redução do conjunto de dados

- Todos os métodos estatísticos dependem da qualidade dos dados usados.
- Se os dados não representam o que nós pensamos que eles representam, então a conclusão que obtemos dos resultados dos métodos não são corretas
- Os erros podem ocorrer de forma sistemática ou como outliers.
- Redução do conjunto de dados é relacionado com validação dos dados.

Outliers

 Diagramas de espalhamento são efetivos para identificar outliers, assim como box plots.

Outliers (Cont.)

- Os outliers devem ser identificados com base na execução do experimento na forma dos dados coletados, do conjunto dos dados e da análise descritiva.
- Quando outliers são identificados, o importante é decidir o que fazer com eles, analisando também porque eles ocorreram.

Outliers: diretrizes

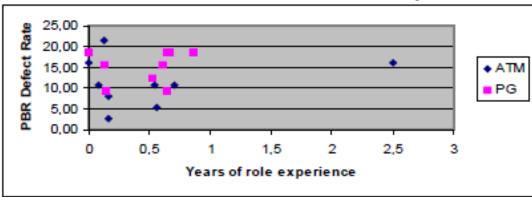
- Um evento estranho ou raro que não deve ocorrer novamente : exclua o dado da amostra
 - Ex. Dado não entendido, ou errado
- Um evento raro que pode ocorrer novamente, é mais sensato não excluir, pois o outlier tem uma informação.
 - Ex. Resultado de sujeito inexperiente.
 - Se essa variável não foi considerada antes (ex. experiência, pode-se também dividir a amostra com base nela e fazer duas (ou mais) análises. Isso deve ser feito caso a caso

Outliers: diretrizes

- Não são apenas dados inválidos que podem ser retirados da amostra.
- Muitas vez não é efetivo analisar dados redundantes se forem muitos.
 - Técnicas para identificar redundância são a análise de componentes e identificação de fatores ortogonais (não tratadas no livro)

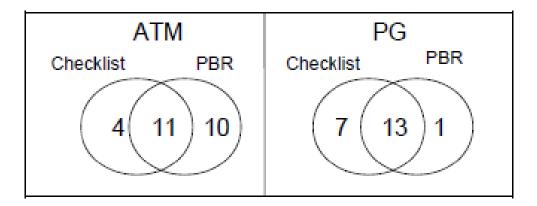
Análise Descritiva

- Estatística Descritiva
 - Medidas de Tendência Central (média, mediana, moda)
 - Medidas de dispersão (desvio padrão, variância)
 - Correlações (Pearson, Spearman)
- Análise Gráfica
 - Diagramas de dispersões
 - Histogramas e Gráficos de Pizza
 - Box Plots

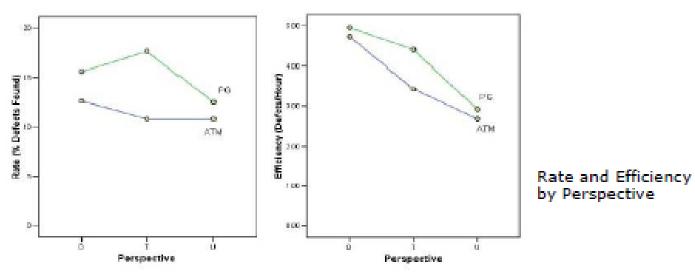

Metas da Análise Descritiva

- Identificar tendências centrais de variáveis e seus tratamentos
- Identificar o grau de dispersão
- Identificar pontos fora da curva (outliers)
- Identificar Correlações

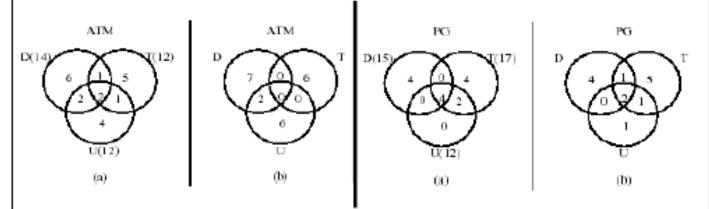
Exemplo de Análise Descritiva


O3') Does the reviewer's experience affect his or her effectiveness?

PBR effectiveness versus readers' role experience


- We used a questionnaire to measure the subject's experience in their assigned perspective. The relationship between experience and effectiveness is weak
- Reviewers with more experience do not perform better than reviewers with less experience
- This conclusion is supported by the results of the Spearman's and Pearson's correlation tests that showed numbers smaller than 14%, far from indicating a high degree of correlation

R1) Do individual reviewers using PBR and Checklist find different defects?


- ATM: the two techniques appear to be complementary in that users of each technique found defects that were not found by the other technique
- PG: the techniques do not appear to be complementary, because the PBR users only found 1 defect not found by the checklist users

R2) Do the PBR perspectives have the same effectiveness and efficiency?

- Each point represents the mean of the 3 reviewers composing the group.
- ATM: Designer were the most effective and efficient
- PG: Tester were the most effective and Designer were the most efficient
- The perspectives had no significant effect on either effectiveness (p=.654) or efficiency (p=.182)

R3) Do the PBR perspectives find different defects?

- ATM:
 - o each perspective identified unique defects with little overlap
 - the three perspectives were more likely to find different defects
 - The perspectives identified a similar number of occurrences overall
- PG:
 - the Designer and Tester perspectives appear to be complementary, but the User perspective does not provide much added benefit
 - o The perspectives identified a similar number of occurrences

Testes de Hipóteses

- Hipóteses avaliadas por testes estatísticos definidos pelos pesquisadores da estatística inferencial
- Normalmente são definidas duas hipóteses
 - Hipótese nula (H0): indica que as diferenças observadas no estudo são coincidentais, ou seja, é a hipótese que o analista deseja rejeitar com a maior significância possível
 - Hipótese alternativa (H1): é a hipótese inversa à hipótese nula, que será aceita caso a hipótese nula seja rejeitada
- Os testes estatísticos verificam se é possível rejeitar a hipótese nula, de acordo com um conjunto de dados observados e suas propriedades estatísticas

Testes de Hipótese

 Os teste comparam médias entre grupos de participantes realizando tratamentos diferentes

"Utilizando a técnica XYZ, os desenvolvedores concluem a atividade de projeto em menos tempo do que utilizando a técnica ABC"

```
Hipótese Nula: \mu (Tempo<sub>XYZ</sub>) = \mu (Tempo<sub>ABC</sub>)
```

Hipótese Alternativa: μ (Tempo_{XYZ}) ≠ μ (Tempo_{ABC})

Teste Estatístico

- Calculados fundamentalmente a partir de uma função de teste que considera três valores:
 - Diferença entre os valores "médios" das estatísticas para os tratamentos
 - "Dispersão" dos valores da estatística
 - Número de amostras
- A função de teste, F(m,σ,N), depende do:
 - tipo de distribuição dos dados, e.x., normalidade e homocedasticidade.
 - Número de fatores e tratamentos

Homogeneidade da variância

Exemplo

- Quer-se testar a Hipótese "homens são mais altos que mulheres"
 - Determina-se uma amostra da população utilizando um fator e dois tratamentos
 - A certeza depende do:
 - Número de pessoas amostradas
 - Da diferença entre a altura média nos tratamentos
 - Da dispersão da altura nos tratamentos

Tipos de Erros

- A verificação das hipóteses sempre lida com o risco de um erro de análise acontecer
 - O erro do tipo I (a) acontece quando o teste estatístico indica um relacionamento entre causa e efeito e o relacionamento real não existe
 - O erro do tipo II (b) acontece quando o teste estatístico não indica o relacionamento entre causa e efeito, mas existe este relacionamento

```
\alpha = P \text{ (erro-tipo-I)} = P \text{ (H}_{NULA} \text{ \'e rejeitada | H}_{NULA} \text{ \'e verdadeira)}
```

$$\beta = P \text{ (erro-tipo-II)} = P \text{ (H}_{NULA} \text{ não é rejeitada | H}_{NULA} \text{ é falsa)}$$

Nível de Significância

- Indica a probabilidade de se cometer um erro tipo-l
 - Os níveis de significância (α) mais comumente utilizados são 10%, 5%, 1% e 0.1%
 - Chama-se de p-value o menor nível de significância com que se pode rejeitar a hipótese nula
 - Dizemos que há significância estatística quando o p-value é menor que o nível de significância adotado

Procedimento para o Teste de Hipótese

- Fixar o nível de significância do teste
- Obter uma estatística (estimador do parâmetro que se está testando) que tenha distribuição conhecida sob HO
- A estatística de teste e o nível de significância constroem a região crítica pela o qual o teste passa
- Usando as informações amostrais, obter o valor da estatística (estimativa do parâmetro)
- Se valor da estatística pertencer à região crítica, rejeitase a hipótese nula, aceitando-se a hipótese alternativa
- Caso contrário, não se rejeita a hipótese nula e nada se pode dizer a respeito da hipótese alternativa

Teste de Hipótese na Prática

- Na prática:
 - escolhe-se a estatística de teste
 - escolhe-se o valor P (significância)
 - Usa-se uma ferramenta estatística para aplicar oteste e verificar o valor de P
- A escolha do teste depende da determinação do tipo de distribuição dos dados e de quantos fatores e tratamentos vão ser analisados no teste
 - Testes paramétricos: assumem uma distribuição e são mais poderosos
 - Testes não paramétricos: não assumem uma distribuição .
 Têm uma aplicação mais abrangente

Alguns Tipos de Teste

Projeto	Teste paramétrico	Teste não-paramétrico
Um fator, um tratamento	-	Binomial Chi-2
Um fator, dois tratamentos aleatórios	Teste T Teste F	Mann-Whitney Chi-2
Um fator, dois tratamentos pareados	Teste T pareado	Wilcoxon
Um fator, mais de dois tratamentos	ANOVA	Kruskal-Wallis Chi-2

Exemplo Teste de Hipóteses

O1') Do PBR teams detect a more defects than Checklist teams?

- H0: There is no difference in the defect detection rates of teams applying PBR compared to teams applying the Checklist technique. That is, every successive dilution of a PBR team with a non-PBR reviewer has only random effects on team scores.
- Ha: The defect detection rates of teams applying PBR are higher compared to teams using the Checklist technique. That is, every successive dilution of a PBR team with a non-PBR reviewer decreases the effectiveness of the team.

- Doing a permutation test as done in the original experiment, there were 48620 distinct ways to assign the reviewers into groups of 9.
- The group with no dilution (all PBR reviewers) had the 24769th highest test statistic, corresponding to a p-value of 0.51.
- Therefore, unlike the original study, we cannot reject the hypothesis H0.

O2') Do individual PBR or Checklist reviewers find more defects?

- Group effect (RT X DOC interaction)
- H0: There is no difference between Group 1 and Group 2 with respect to individual effectiveness/efficiency.
- Ha: There is a difference between Group 1 and Group 2 with respect to individual effectiveness/efficiency
- Main effect RT
- H0: There is no difference between subjects using PBR and subjects using Checklist with respect
 to individual effectiveness/efficiency.
- Ha: There is a difference between subjects using PBR and subjects using Checklist with respect
 to individual effectiveness/efficiency.
- Main effect DOC
- H0: There is no difference between subjects reading ATM and subjects reading PG with respect
 to individual effectiveness/efficiency.
- Ha: There is a difference between subjects reading ATM and subjects reading PG with respect to individual effectiveness/efficiency.

Because the experimental groups had the same number of subjects, the ANOVA for balanced design was used. This analysis involved two different factors, or treatments: the reading technique (RT), the requirement document (DOC).

O2') Do individual PBR or Checklist reviewers find more defects?

ANOVA summary table with respect to the individual effectiveness

Independent Variables	Effectiveness (average percentage MINITAB)	P
RT X DOC	-	0.275
RT	Checklist= 11.417; PBR= 13.346	0.404
DOC	ATM= 9.310; PG= 15.453	0.005√

ANOVA summary table with relation to the individual efficiency

Independent Variables	Efficiency (average)	P
RT X DOC	-	0.417
RT	Checklist= 2.775; PBR= 3.856	0.101
DOC	ATM= 2.817; PG= 3.814	0.131

O2') Do individual PBR or Checklist reviewers find more defects?

Document	ATM		PG	
Technique	Checklist	PBR	Checklist	PBR
Defects Found/Total defects	15/37 (40.5%)	21/37 (56.8%)	20/32 (60.5%)	14/32 (43.75%)
Occurrences of Defects/Total occurrences	24/333	38/333	45/288	44/288
Effectiveness	7.21	11.41	15.63	15.28
Efficiency	2.00	3.62	3.53	4.10

- ATM: PBR found a higher percentage of the defects than checklist.
- p-value = 0.143 (not statistically significant at the .05 level)
- PG: Checklist found a higher percentage of the defects than PBR.
- p-value = 0.911 (not statistically significant at the .05 level)
- Efficiency (errors/hour): PBR were more efficient for both documents.
- ATM p-value=.107, PG pvalue=.51 (not statistically significant at the .05 level)