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SYSTEM MODELLING WITH HIGH-LEVEL PETRI NETS
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Institut fiir Informationssystemforschung, Gesellschaft fiir Mathematik und Datenverarbeitung,
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t.bsteact. The paper presents a high-level Petri net model of concurrent systems called pre-
dicatef transition-nets (PrT-ncits). Its places represent variabl= properties uf, or relations between,
‘ndividuals; they are ‘predicates’ with variable extension. The transitions represent ciasses of
elementary changes of those extensions. The niodel is introduced on the basis of a simple example
from resource management. The central part oi the paper is devoted to l:near-algebraic techniques
for verifying invariant assertions, yielding a calculus of S-invariants for C¢T-nets. Finally, these
movielling and analysis techniques are ~pplied to a scheme for organizing a distributed data base
taken from literature.

1. Introduction

When Petri first introduced ‘his’ nets of places (‘‘Stellen”) and transiticns (“Tran-
sitionen”’) in [17], they served as a vehicle for developing a non-idealizing approach
to concurrency and information flow in organizational systems. i_ater the possibility
of using these nets, by then called Petri nets, in practical systems design was
beautifully demonstrated by Holt et al. [8], Shapiro and Saint [27] and Patil [16].

Encouraged by this and the inspired writings of Holt and Commoner [9] a number
of attempts were made to pui Petri nets to the sarme kind of use, but in more
ambitious settings. Here, the user of Petri nets was quickly and rudely brought up to
face the fact that he was being forced to deal with rather large systems at an
unacceptable level of detail. At this point, a number of people became disillusioned
with Fet:i nets and promptly dropped the idea of considering them any further.
Others persevered and developed some very useful extensions and derivations of the
original model to fit their specific needs. (A typical example is the evaluation net
model developed by Noe and Nutt {15].) ’

Recognizing well in time that a variety of net based modeis are needed in practice
Petri proposed in [19] to interconnect the various models that may arise by means of
meaning preserving transformations of ‘iniscribed nets’. The underlying idea of his
proposal is rather simple: On any given conceptual level, the gt sucture of a system (its
decomposition into components) is represented by a simple formal object called a
(directed) net- a natural generalization of the notion ‘directed graph’. All other
aspects of the modelied systems (function, purpose, behavio 1, . . .) are expressed by
assigning varicus kinds of ‘inscriptions’ to the elemen's of ti.e net. Such inscriptions
may be natural language texts, formal expressions, special symbols, or 2% kinds of
graphical devices. Their semantics are deduced, by means of completion ard
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abstraction, from an axiematically defined basic interpretation of nets, the condi-
tion/ event-sysiem model [201.

Petri [21, 221 <alled this ‘programme’ General Net Theory (G.N.T.) indicating its
origin in the ‘special’ net theory of the token game played in place/transition-nets
(c.f. [217). Within this programme, for example, two classes of system nvarianis were
disciosed through the vehicle of completion, the enlogic structure and the synchronic
structure of systerns [20]. By rzeans of abstraction, e.g., the existence of two different
forms of information flow in systems, called flux and influence, could be shown
r18, 21]. 'The purely mathematical aspects of the piugramme are treated within the
category of nei morph'sms [19].

In this paper we present as a new result of G.N.T. a transition net model with
rather sophisticated inscriptions whose semantics are derived from ‘ordinary’ Petri
nets, in a strictly formal way, through an equivalence transformation of inscribed
nets. This mode! combines and completes a great deal of existing material: the net
representation of first-order predicate logic derived from th: enlogic structure by
Genrich and Thicler-Mevissen [6, 28]; the transition nets with coloured tokens
introduced by Lautciibach and investigated by Schiffers and Wedde [24, 25]; and the
transition nets with complex conditions and transmissions used by Shapiro [26]. A
similar but independent attempt was made by Nieters in [14]; his TL-nets may now
be viewed as a rather complicated special case of our model. At a very early stage,
Jensen learned of our work and developed it further in a very interesting way [10]. It
should be worthwhile to compare his approach with ours in a future Haper.

Our model which we shall call predicate/ iransition-nets (PrT-n=ts) adds to the
modelling power and complexity of Petri nets a new dimension, namely the formal
treatment of individuals and their changing properties and relations. We shall see that
this stcp is comparable — guantitatively and qualitatively —to that of going from
propositional logic to first-order predicate logic.

Assuming some familiarity with Petri nets, we introduce in the next section the
model on the basis of a simple example takea from the realm of resource manage-
ment. The central part of the paper is devoted tc the task of transferring the calcuius
of §$-invariants, 2 powerful linear-algebraic technique for verifying invariant asser-
tions known rom [11, 17}, to the new model. Finally, in Section 4, we apply the
apparatus developed so far to the analysis and verification of a scheme for organizii.g
a distributed database taken from literatura [2, 13].

This paper is » greatly revised version of a paper [4] presented at the Evian
Conference on Semantics of Concurrent Computation which was also included into
the course mnaterial of the Advanced Course on General Net Theory of Processes and
Systems held in Hamourg in October 1979 [5].

2. Predicate/tramsition-nets

Following the programme of G.N.T. sketched above we start the development of
Sui high-level Petri nict model with the following
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Definition 2.1. A triple ¥ = (S, T'; F) is called a (directed) net iff

(1) SN"T=2,

(2) SUT#8,

(3) FeS§xTuTxs,

{4) dom(F)ucod(F)=SUT.

For a given net N = (8, T'; F) we call

(5) X =8 uT the set of (S- or T-) elements of N, and

(6) F the flow relation containing the arcs of N;

For an element x € X,

(7) ex={yl(y, x)e F} and xe:={y|(x, y)e F} are called the preset and postset
of x, respectively.

In Fig. 1, we see the graphical representation ¢f a net. The S-elements are
represented by circles O, the T-elements by boxcs [, and an arc (x, y)eF is
rgpresented by an arrow leading from the image of » to the image of y.

Additionally, the net shown in Fig. 1 is inscribed in two ways. Fiist, the §- and
T-elements are labelled by certain identifiers which will allow us tc talk about the net
and its properties. Second, some of the §-zlements are marked by a ‘tokes’. Thus the
circles serve as places for tokens wihich allow us to play the ‘token game’ on the net
and to simulate the behaviour of the simple system which we associate with Fig. 1.

To this end, we interpret the plices as elementary conditions of the system, i.e.
atomic propositions about the system with a changing truth value. In a given case, the
presence or absence of a token on a place represent the holdir:g or non-holding of the
corresponding condition, respectively.

The boxes represent elementary changes, called transitions, in the holding and
non-holding of conditions. For a given transition x, we call ike elements of its preset
ex and its postset xe the preconditions and posiconditions of x, respectively. A
transition has a chance to occur (to “fire’) in a given case if all its preconditions hold
(carry a token) and all its postconditions do not. By an occurrerice of a transition, all
its preconditions cease to hold iad all its postconditicns begin to kold. Systems which
are morlelled in this way will oe called CE-systzms (systems of cond.ions and
events).

In the case shown in Fig. 1, two transiticns, 1/ and 17, may occur, and they may
occur concurrently since they are completely separated; tley bave no pre- or

Fig. 1.
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postconditions in commion. If both 1/ and 1r occur, the result is a new marking, in
which W1, Wr, and R carry a token. In this case, both 2/ and 2r may singly occur; they
are, however, in conflict: one transition looses the chance to occur by an occurrence
of the respective other. Assuming that 2/ occurs, 3/ is the only transition which may
occur next returning the token to the place R. Now 4/ and 2r may occ ir concurrently.

Continuing this simulation of the processes which are supported by the system and
exhausting all possibilities, we shall see that all transitions will get a chance to occur,
with one exception: the transition [l is ‘dead’, i.e. it has no chance to occur at all.

We call those t-ansitions which get a chance to occur events; the dead transitions
we call facts. Facts are conceivable but factually impossible chasniges of the system.
They play as an important role in ihe specification of systems as events: They
represent (avariant assertions about systems. In our example, [0 repiesents ‘the fact’
that = (U7 A U?) is an invarian: assertion expressing the mutua! exclusion of condi-
tions U! and Ur.

Evants and facts are two classes of the enlogic structure of CE-systems which
classifies all conceivable changes [20]. As in our example, we shail use the symbol [3
from now on fnr facts in general. In order to emphasize the impartant role of facts in
the theory of CE-systems (systems of conditions anrd events), we state without proof
the following

Theorem 2.1. Every dead ransition of a CE-systen: represents an invariant (pro-
positional) assertion built from conditions ; and everv such invarian: a-sertion can be
represented by a set of dead transitions [20].

We have seen that we can interoret Fig. 1 as the net representation oi 2 little system
intc which two sequential coniponents are imbedded in such a wav that they never
can be in their respective ‘critical’ phases at the same time. The place R may be
viewed as representing the availability of a resource which is needsd by both
components but can only be used exclusively.

In Fig. 2, w2 see the same net as in Fig. 1 but with sligh:ly different inscrintions.
First, the places can carry more than one token. Thus they can no longer be
interpreted as conditions which either hold or don’t. Rather they may be consider«d
as non-negative integer quantities, the number of tokens expressing their
current value. Second, arcs may be labelled by a positive integer expressing the.r
multiplicit-.

This inscribed net is a simple example of a Petri net or, as we call it more precisely,
a place/transition-net (PT-net). It ditfers from the CE-system mcdel in that the
places may carry more than one token, and that a transition may remove or add more
than one token from or to the places, according to the multiplicity of the respective
in- and outgoing arcs. One may or may not wish to assign capacities to the places, i.e.
a maximal number of tokens which cannot be exceeded by transition occurrences.
Accordingly, one distinguishes between the strict and the weak trapsition rule. (Thue
we can say that CE-svstems are modelled by PT-nets with capacity one.) If we assign
capacities to ¢~ = places of our model in Fig. 2 consistently with the initial marking,



System modelling with high-level Fetri nets 113

Fig. 2.

there is no danger of exceeding these capacities: The system is safe with respect to
the capacities.

As one might have guessed already, Fig. 2 represents a simiple veision of the
so-called reader/writer system. There are five components (‘readers’) which may
share the rzsource, and one component (‘writer’) which can use the resource oniy
exclusively. The three tokens on R indicate that up to three components may use the
resource at the same time.

Again the main specification, the essential restriction to the unco-ordinated
behaviour of the two components, is expressed by the single dead transition [. if we
do rot trust in simulation for verifying that this specification is met, we can use the
method of S-invariants in order to prove ii.

This method profits from the iincar-algebraic version of the token game based
upon the incidence matrix of (\cop free) Petri nets. Briefly, the incidence matrix of &
Petri net is a matrix with rows for each piace and columns for each transition. Th¢
entry for row s and column ¢ is » if there is an arc from ¢ to s with muitipiicity n, and it
is —n if there is an arc from s to ¢, otherwise the entry is zero.

In Fig. 3 we see the incidence matrix of the net shown in Fig. 2 (z¢roes being
omitted) together with the vector represeatation of the initial marking (M,), and a
vector { which has the following property: The linear combination of the rows of the
incidence matrix using the corresponding entries of i as coefflicients is the zero row. It
is now easy to prove that for an arbitrary marking M which can be derived from M,
by means of occurrences of transitions, the inner product of M with i equals the innier

Iw 2Zw 3w 4w Ir 2r 3 4r | M, i

Hw -1 1 i
Ww 1 -1
Uw 1 -1 3
Dw 1 -1

Wr 1 -1
Ur
Dr 1 -1

|
—
-

Fig. 3.
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product of M, with i:
iToe M =iT e M, (i)
For example, (1) becomes

JeM(Uw)+1e M(RY+1 e M(Ur)=1e My(R)=3.

Taking (1) for granted (we shall return to it in the next section) it follows immediatzly
that it is impossiblc to have a token both on Uw and Ur if we observe the rules of the
game.

The way in which we have represented the reader/writer system by means of a
place/transition-net does not allow to identify the individual readers. It is only
possible to determine the number of readers which are in a specific phase in a given
case, In order to retain the identity of the readers, we have to ‘unfcld’ the reader part
of Fig. 2 as shown, in a schematic form, in Fig. 4.

We are now going to show a technique for maintaining the identity of components
even in a highlv condensed representation. As an example, we take from [26] a slight
generalization of our last example such that all components show exactly the same
behaviour. We consider acommunity C of users of asingle resource that may be use«
in either of two modes, ‘exclusive’ or ‘shared’. Again there is, independently of the
number of users, an upper limit N of concurrent shared usages.

In Fig. 5 we see a net representation of this system for a community C ={a, b, ¢}
and V = 2. The two different modes are denoted by the two identifiers s (shared) and
e (exclusive) forming the set M ={s, e}. Tl}e system is modelled in terms of four
predicates H, W, U, and D, and 2n integer quantity R:

H(u) < user u has nothing to do with the resource;
W(u, m) <> user u wants to vse *he resource in mode m ;
U{u, m) <> aser u is using the resource in mode m ;
I){u, m) <> user u has finished using the resource in mode m ;
R() = the number of times the resource is still
available for shared usage.
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Fig. 5.

The predicates H, W, U, and D are schemes of conditions, i.e. of atomic propositions
with che aging iruth values. Thus their extensions, the sets of (tuples of) individuals
they map onto ‘Liolding’, may change. Instead of marking a place with simple tokens,
we now mark the predicates with their current extension. In the generalization frem
conditions to integer quantities these exter:sions may contain the same tuple more
than once; they are no longer sets but formal sums (‘multisets’) of tuples of
individuals. In order to include ordinary places as a special case, we treat them as
zero-place predicates and denote the ‘zero-tuple’ by ¢.

Not only the ‘places’ of Fig. 5 represent schemes of places, the ‘transitions’ of Fig. 5
represent schemes of transitions, t00. The arcs are labelled by (formal sums of) tuples
of individual variables. An instance of a single transition in Fig. 5 is generated by
consistent substitution: all variables at this transition are replaced by individual
symbols, and all occurrences of the same variable are rzplaced by the same symbol.
However, only those instances of the transition belong to the system which satisfy the
logical formula inscribed to the transition (no inscription means no restriction). In
Fig. 6 we show the result of applying this rule to transitions 1 and 2s of Fig. 5.

The complete expansion of Fig. 5 into an ordinary place/transition-net represent-
ing the same system is shown in Fig. 7. Its size demonstrates rather drastically the
advantage of the representation used in Fig. 5 (try to imagine how Fig. 7 would look
like for ten or a hundred users).

In order not to ove~»urdea Fig. 5, we have not represented the restriction meant
by the terms ‘shared . and ‘exclusive use’. This is shown in Fie. 8 separately.

By the graphical sy.abol @ we dencte again a dexd transition or now, more
precisely, a sct eme of dead transitions. Tlien the diagram in Fig. 8 reads as follows:
In no case of the system, place U carries two pairs one of which has an e at its second
position. In other words, if one user is using the resource in mode ‘exclusive’, there is
no other user using the resource at all.
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The inscribed nets shown in Fig. 5§ and Fig. 8 are examples of the net model which
we shall call, from now on, predicate/ transition-nets (PrT-.iets). We have sezn how
the size of a net model of a sy<*>'n can be considerably reduced by using these
‘fi;st-order Petri nets’. That the increase in modelling power is indeed comparable to
that when going from propositional logic to first-order logic, has been shown in [6]
from where we get the following

Theerem 2.2. Every formula of first-order predicate logic can be equivalently
represented by a set of dead transitions of a PrT-net with all places having the capacity
one (no tuple can appear more than once on any given place).

Before we enter into the more formal presentation of the PrT-net model, we will
show one more possibility for compressing the net in Fig. 5, within our technique.
The two transition 25 and 2e are connected to the same predicates in the same way.
They only differ with respect to the inscriptions assigned to them and to the adjacent
arcs. The same applies to transitions 3s and 3e. We now allow to denote arc labels by
expressions, like conditional expressions or functional terms. (It is this device Jensen
[10] has based his technique upon.) Then, with

lg, m=s
F := { ? ’
(m) 2¢, m=e
the diagrain of Fig. 5 can be equivalently transformed as shown in Fig. S.
©
-
H
u u
w U D
mee ] <u.md ) _cum u.m> ( ) <y, m> | <u.m> ( \_Su.m> fm:=e
1m=s -/ 2 3 / m:=s]y
F(m) F{m)
R
Fig. 9.

We will now summarize and formalize the result of our introduction of a new,
higher-ievel Pet-i net model in the following

Definition 2.2. A predicate/ransition-net (PrT-net) consists of the following const.-
tuents:
(1) A directed net (8, T'; F) where
- § is the set of predicates (‘first-order’ places) O,
- T is the set of (schemes of) transitions (.
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(2) A structure ¥, consisting of sor:-¢ sorts of individuals together with some
operations and relations.

(3) A labzlling of all arcs with (an expression denoting) a formal sun of tuples of
variables, whose length n is the ‘arity’ of the predicate connected tc the arc. The
zero-tuple indicating a no-argument predicate (an ordinary place) is denoted by the
special symbol ¢. For examples see Fig. 10(a).

C] %,y D O 2x+z__D O_Bz D O(x.z»(x.z)D

Fig. 10(a).

(4) An inscription or: some transitions being a logical formula built from the
operations and relations of the structure ¥ ; variables occurring free in 2 formula have
to occur at an adjacent arc.

If a formula at a box has the form v =¢ A+ + -, where v is a varicble and ¢ a term, all
occurrences of v at the transition may be repiaced by copies of ¢ For examples see
Fip. 10(b).

N N ,
' x#ta ] Xey<z y=fix) LS__@_. o> <1 flxh
* r‘ Y ¢ t(x}
Fig. 10(b).

(5) A marking M, of predicates of § with formal sums of n-tup’es of individual
symbols. (We call these tuples just items). For sramples see Fig. 10(c).

C—=— (o (‘D -

Fig. 10(c)

(6) A function K which assigns to the predicaies an upper bound for the number
of copies of the same item which it may carry. X (s) may be called the capacity of s.
(Ignoring capacities can be expressed by infinite capacities.)

(7) The transition rule ‘~ for predicate/transition-nets: Each element of T
represents a class of possible indivisible changes of the markings of the adjacent
predicates. Such a charge consists of removing /O—[) and adding ((J—O) copies of
items from/to pla: es according to the expressions labelling the arcs. It may occur
whenever, for an assignment of individuals to the variables which satisfies the
formula inscripted to the transition, all input predicates carry enough copies of
proper items atd for no output predicate the capacity K is exceeded by adding the
respective copics of items. The sei of all markings connected to M, through such
occurrences of transitions is denotec by [Mg].

For an exampls see Fig. 10(d). For a structure ({2, 5, c}; (= alphabetical ordering)
and K =3, two ¢ " .he nine instances of the transition are ¢cnabled under the marking
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Fig. 10(d).

shown on the left side. Due to conflict, however, at most one will occur. For the
assignment (x, y, z) < (a, b, ¢) the resulting marking is shown on the right side.

We shall see that formal sums in items play the same role in our model as integers
play in ordinary Petri nets. In fact, the transfer of the linear-algebraic techniques for
Petri nets to predicate/transition-nets is based exactly upon this generalization of the
integers. Therefore we introduce here a ininimum of notation needed in the next
sections. The formal apparatus is that of polynomial rings over commutative rings; it
can be found in any book on algebra, ¢.g. [7]. For the purpose of this paper,
multilinear forms, i.e. formal sums of procucts of different items, will suffice. In the
further development of the linear theory of PrT-nets, however, polynomials ‘n
general will be needed.

(1) An integer polynomial in »n variables p=p(vy,...,v,) is a sum
Y Diyoorken @ vit e evin|k;=0,...,k, =0, where each py,...., is an integer calied
the coefficient of the product v§! e« - - o n*~,

(2) In our case, the variables are the items, i.e. tuples of individual names. The
empty item ¢ is the unit element of the ring (the Oth power of any item). The integers
are identified with polynomials of degree 0 (in ¢ only).

(3) For two polynomials p = p(vy,...,v.)andq=q(vy, ..., v,) we wiite p <q iff
Dk ok Sqkye-ky for ail iy, ..., k,=0.

(4) For a polynomial p =p(vy, ..., v,) we denote by |p| the (unit) value {sum of
coefficients) p(1,..., 1)

(5) For a vector (matrix) of polynomials, its value is defined as the vector {(matrix)
of the values of its elements. If C and D are matrices of poiynomials, then
|C o D|=|C| e |D|. In the same way, if x and y are vectors in polynomials, then
|x * y|=|x| *|y| for the inner product.

(6) To a set of items we assign its characteristic polynomial by racans of an
operator 7: m(X) =Y x|x e X.

(7) The incidence mairix of a pure (F nF~'=9) predicate/transition-net is a
mapping C from § X T into integer polynomials such that

[ —I, listhelabelof (s, 1) e F,
C(s,t) =14 I, listhelabelof (s, s)eF,
l 0, otherwise.
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3. Invariant assertions and linear algebra

Let C be the incidence matrix of a predicate,/transition-net PN; ther a vector i of
arc labels is called an S-invariant of the net PN if CT o i =0 where C denotes the
transpose of C (cf.[3, 11, 12]. If i(p) # 0 for some place p, we call i(p) the weight of p
in i, and i an S-invariant through p.

The unit value |C| of C is the incidence matrix of an ordinary Petri net [PN,, the
(unir} ralue of PN. Because of

ICT»i|=0=>|C|T < |i|=0

we see that the value of an S-invariant is an S-invariant of the value of the net).
In place/t:ansition-nets we take advantage of equations of the following kind:

iTeM=i"e M, (2)

for an S-invariant i and all M € [M,] ([M,] denotes the set of all racrkings derivable
from M,) which states that the inner product of an S -invariant with the elements of
one marking class is an invariant quantity. The unknowns of (2) are the elements of M
because i and M, consist of integer constants. The normal application of (2) is to
assume values for some.elements of A4 and then to try to solve (2). 't (2) is not
solvable, then we know for sure that no marking M €[M,] exists for which the
assumption holds. On the other hand, every solution of (2) shows that there exist
markings for which the assumption is satisfied. Moreover, our knowlzdge about such
markings has grown.

The interpretation of (2) for PrT-nets is more complicated. In order to interpret (2)
we should first show by means of a simple but characteristic example (Fig. 11) that
like in: place/transition-nets there exists a line::: relationship between initial mark-
ings and their follower markings:

Let C be the incidence matrix of a PrT-net PN with the initial marking M,, and let
M € [M,] be a follower marking of M,; then there exists a linear representation

Ceof=M-M,. (3)

X y4

Y
O <u,md m.uy N <mw Cu,m} O
1 -/ 2

1 2 i M,
X | ~u,m) (m, uj (a, e)+{u, s)+(b, &) + (b, 5)
C=%| (mu) —{m, u) (u, m)
zZ (4, m) (m, u)

Fig. 11.



System modelling with high-level Petri nets 121

In:ig. '1 wve see a PrT-net and in a table the incidence matrix C, an S-invariant |,
and ihe vect : representation of the initial marking M,. The S-invariant property of
i can easily - = checked by showing that ths linear combination of the rows, using the
corresp-ondi-:g entries of / as cocificients, is the zero row. It is obvious that the
cormmua.'viy of the formal product is imperative.

Thec ave lour individual symbols a, b, e, s which are partitioned into two sorts,
{a, b} designated by the variable u, and {e, s} designated by the variabie m. X, Y, Z
are binary _-:dicates with variable extension. But note that the pairs belonging to
these extensicns are of different sorts: the extensions of X and Z are of sort (i, m),
the exter ‘0 < of Y are of sort {m, u). (In Fig. 11 and in all similar figures we have
omitted zero-entries.)

First of all, we want to show (3) and (2) for the simplest case that exactly one
transition fires exactly once: transition 1 fires once and takes {(a, ¢) from X and puts
{e, a) on Y. The resulting marking is

(a, s)+(b, e)+(b, s)
Ml= (ea a)
0

The difference between tl. > two markings is

_(as e) —(N, m)

AM =M -My=\| {(e,a)| =y (m,u)
0 / ' Y ' (u=a)
(m=e)

-[e-()...

(m=e) (m=e)

]

@
ey
—
(ol
g

T
]
=}
[ P—

So we get (3) in the following form:

N1
0/(u=a)-l =AM,

(m=e)

Cof:=C.[(

In this ‘linear’ representation, the multiplication of C by f means first to select
column 1 of C and then to substitute # by symbol a and m by e which corresponds
exactly to the single firing of transition 1 mentioned above.

Next, we want to verify and interprete (2). We start with

iT e MM = ~{m, u) o (a, e)+(u, m) e e, a).

Obviously, in order to get (2) we have in i to substitute u = a, m = e. This, however, is
noihing else but accompiishing e following consistent substitution :
in elementary preducts we complete partial bindings.
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For example, in {m, u) ¢ (a, ¢) u and m are partially bound by a and ¢, resp. The
completion cf this bindings yields (¢, a) » (a, ¢). So we finally have for (2)

iT o AyM =~(m, u} e {a, e)+{u, m)e e, a)
=—(e, a) e (a, e} +{a, 2> o {e, a)
=0, because the procuct ¢ is commutative.

What we nave found is, how to interprete (2) and (3) in the simplest case of one
transition firing once, and that this interpretation is an obvious consequence of the
transition rule. The extension of these observations for general firing sequences leads
for 2) and (3) to linear combinations of the elementary case.

Let trapsition 1 fire for {u, m)={(a, ), {a, 5), (b, ¢) and transition ! for {m, u)=
{e, a), (s, a) and let the resulting marking be M. The difference is

[~(a, e)—(a, s)— (b, e)\
AoM = My — M, = \ (e, b)

(a, 2)+{a, s)

Now letc be

{

“(.as e) ’_<a: S) "{l’, e)
AZIM = (es a) s AZZ M = ( <S, a) ’ A23M o= ,v”s b) ’
0 0 0

0 (0
A r = --(e, a) , A251M = (‘—(S, a))
(a, €) (a, s)

Then we have A;M = Ay M + A M + AysM + Ay M + AxsM which represents a

partition of cur firing sequence into single firings. This yields according o the above
for (3):

AM=Cefi+C o Lb+C 0f3+C‘f4+COf5

JA 1 1 0 0
= (o1 O (0 * D * (D]
* ‘O}(u=a) 0/ (u=a) " 0/ (=b) 1V u=a) 1/ (u=a)

(m=e) (m=5s) (m=e¢) (m==g) (m==5)

= Cof.
For (2) we find
iTe oM =iTo Ay M+iT0 ApsM +iT 0 ApsM +iT 0 AguM +iT 0 AysM
=—(m, u) e {a, e} +{u, m) o (e, cV—(m, u) o (2, s)+(u, m) s {s, a)
—(m, u) o (b, e} +{u,m)e ir, b)~{u,md={., a)

+(m, u) e (a, e) ~(u, m) e (s, a)+{m, u) e {a, s).
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By applying the ruie of consistent substitution to every elementary product and the
commutative law we get

iTe A;M =0.

What we have achieved so far is an interpretation of (2) and (3) for PrT-nets. But,
even more importantly, we have implicitely introduced a calculus for S-invariants.
This calculus consists of the following riles:

commutative, associative, distributive law (abreviated C, A, D) for the formal
product e, and the rule of consistent substitution (S) for elementary products.

In addition, we need the reverse of substitution (R) and a division rule (V) which we
will introduce by mea s of the following example: For the net of Fig. 11 we use xgain
M, as initial marking, We want to completely know a follower marking M that is
incompletely given by:

M(X)=0, M(Y)={s, b).

If M is indeed a follower marking of M, we may apply (2) (if not, applving (2) leads
{0 a contradiction!).

iT o Mo=(m, u) e ({a, e)+{a, s)+{b, ¢)--{b, s»
=iT e M =(u,m)e(s, b)+{m,u) e M(Z).

Substitution, reverse substitution, and commutativity icad to

(u.m} e (s, b) g)(b, s)e (s, b) (;-)(b, s)e(m, u) (g)(m, u)e (i, s).

Next, we use the distributive law:
(m, u) e ({a, e)+(a, s)+(b, e)+(b, s)) (g)(m’, u) e ((b, s) +M(Z)).

We can divide the equation %3 the factor (m, u) according to the following rule (V):
In an equation, al! instances of a given sort can be replaced by their value. (Note:
(u, m), {(a, m), (b, e) are instances of sort (u, m}, and [(u, m)|=|a, m|=(b, e)|=1).

{a, e)+{a, s)+(b, e)+(b, 5) = (b, s)+M(Z).

V)

The result then is
MZ)={a,e)+{a,s)+(b, e).

In order to show a further important aspect of the calculus we modifify the example
of Fig. 11. Again, we regard two different sorts, {a, b} and {¢, s} designated by « and
m, resp. (Fig. 12).
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_<_u,m> ( \'. <, m>
1

X Y
1 2 3 i My
X —U u <u9 m) a
Y {u, m) —{u, m) u
zZ (u, m) —(u, m) u (b, e)
'm |
Fig. 12.

By firing of transition 1 one item of sort u is taken from place X and one item of
so.t{u, m)is puton Y. For example, a is taken from X and either (¢, ¢)or {a, s} is pu’
ou Y. The problem is that we cannot determine which one !l be chosen by
transition 1. Moreover, after this pair has left Z by firing transition 3 the system has
‘forgotten’ which choice had been made by transition 1. We are used to express
phenomera like this in the following wav, Witk respect of m (in (i, m)) transition 1 is
a source and transition 3 is a sink of inforriation, and the informat'on itself is
observable on 1" or Z and not on X. In contrast to m, u designates a sort the elements
of which are pe;manentiy observable - «ither as items on X or as first entries in pairs
(u, m)on Y an: Z. This important differei:.e hetween u and m isin thie S-invariant i
represented by the fact that u appears in . | 2ntries and m does not. m does not
‘cover’ i like u. The fourth entry of i — m with a warning f2g (!) —is to remind us that
we have to treat m and the sort it designates very carefully when using /.

To d._nonstrate that, we use M, as initial marking and try to complete a follower
mar.ing M which is incompletely given by

MX)=M(Y)=0,
iTeMo=(u,mdea+ue(ble)=i"e M=uoeM(Z).

(2)

Because sort m does not cover i, the binding of m to symbcl e in item (b, e) is only
‘temporary’. This is indicated by the warning flag in the pair (b, !e) which now will be
replaced bv (b, m):

e M(Z} E(u, m)ea+ue{b, m)(=s=)(a, m)ea+bei{b, m)
Sae (a,m)+b e (b, m) Sue (a,m)+u o (b, m)
su e ((a, m)+(b, m)),

M(Z) ;}(a, m)+{(b, m).
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The interpretation of this equation is
dm,, maele, v} M(Z)=(a, m,)+{b, my).

This statement expresses the maximum of knowledge about M we can conclude from
the above assumption. Note the different roles, the variables m, m;, and m, play: m
serves as a sort designator, it is a kind of ‘reserved’ variable used in the calculus; m;,
m; are just quantifiable variables.

There are more examnies of S-invariants which are covered only by a subset of the
sorts involved. It may zven happen that all sorts have to be flagged (nevertheless such
‘pseudo’-invariants may be useful since they express invariant relations between
values). The need for warning flags always arises from some non-determinism in
transitions: If tlere is a transition such that an eicmentary change of the marking of
one adjacent piedicate does not determine uniquely the changes 1 all adjacent
predicates, we must use caution.

We now want to show how the calculus of §S-invariants can be used to verify
invariant assertions about systems. We do this for several dliterent levels of the
representation of the same system. Sta:ting with the highest, i.e. most abstract, for m
we reduce the ‘arity’ of the predicates until all predicates are 0-ary, i.e. ordinary
places (integer quantities).

We again use the simple resource management example introduced in the previous
section, and begin with its most condensed representation shown in Fig. 9. In Fig. 13
the corresponding incidence matrix C, two S-invariants (/ and j). and the vector
representation of the initial marking M, are shown.

1 2 3 4 i j M,
H -u u {u, m) a+b+c
W (u’ m) -<uo m) i
U {u, m) ~{u, m) u F(m)
D {u, m) —{u, m) u
R —-F(m) F(m) {u, m) 2e

{ 'm Tu
Fig. 13.

i is an S-invariant through H, W, U, D, j is an S-invariant through U and R. We
may regard the circuits through these places as the graphical representations of i and
j. Since m does not cover i, it has a warning flag. The reason why 1 has no warning
flag in j is not because m appears in all non-zero-eatries, but because F is bijective
and so no information abouit m can get lost (the possible changes in M uniquely
determine the value of m involved).

We now solve some little problems in completing follower markings by applying
the formalism w.r.t all the four nets reprzsenting the system.

iTe M={(u,m)e MIH)+u o M(W)+u e M(U)+u o 2{(D) (AD)

=(u,m)e(a+b+c)=i" o M.
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(1) Assumption:
MH)=M(U)=M(D)=0.

So:
ueM(W)={u,m)e(a+b+c)

=~\(y, m)ea+{u,myeb+{u,m)ec
o

L

(s,p.;(a’ m)eu+(b,m)eu-t+{c,m)su
:?i))u ¢ ((a, m>+(b’ m)+(ci m))9

MW =(a, m)+(b, m)+(c, m).

The interpretatina of tiis equation is
3r.q, 1y, mac e, sh: M(W) =(a, m1) +{b, m2)+{c, m3)
it el =F(m) e M(U)+{u, m) e M(R) (A2)
(—'2=)(u, m)e2¢=j" e M,

(2) Assumption:
M(R)=2e¢.

So:
Fm)e M(U)+{u,1 ) 2¢={(u, m)  2¢,
F(m) e M(U) = ({u, m)—(u, m)) o 2¢.

The two pairs on the right-hand side cannot be different because F(m) e M(U)=0.
Consequently: M(U)=0.
The next representation of our little system (Fig. 14, 15) is different w.r.t.
representing modes. In the previous model the fact that, for example, user a has

o
De

19_\1_0_2_. .

We

Ws

Fig. 14.
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chosen mode e is modeiled by item (a, ¢) being on W, U, or D. This is now modelled
by item a being on We, Ue, or De. Sc. we have no longer binary predicates, All
predicates are unary with exception of R which is 0-ary like in the previous model.
The users, still designated by «, are now moving along / without being transformed
into entries of pairs. Accordingly, the eiries of i are 0 or 1.

le 2e 3e 4e 1s 2s 3s 4s i i Iy
H -u u | —u u 1 a+b+c
We u -u 1
Ue U —u 1 2z
De U -u 1
Ws u -u 1
Us u -u 1 I'4
Ds u —-u 1
R -2¢ 2 4 £ u 2¢

lu
Fig. 15.

Comparing both representations we see that the price for reducing the ‘arity’ of
predicates is a considerable increase of the size of the net. Let us now compare the
formalisms:

iT o M =M(H)+M(We)+M(Ue) + M(De)+M(Ws)+ M{(Us) + M (Ds)

=a+b+c=i"e M,. (R1)
@)

(1) Assumption: M(H)+ M (Ue)+M(Us)+M(De)+ M{Ds)=0.

So: M(We)+ M(Ws)=a+b+c.

jToM=2£'o]\f[(Ue)+;e'oM(Us)+u e M(R) (‘;u ® 2t=jToM0. (B2)

(2) Assumption: M(R)=2¢.

S0:0<2¢eM(Ue)+g o M(Us)=(u—u) e 2¢.
Because the left-hand side is non-negative both copies of 1 must represent the same
user. Consequently:

M(Ue)=M(Us)=0

This example demonstrates what must not surprise us: not only the size of the net,
but also the complexity of the itivariant assertions increases whern the representation
is refihed. The calculations, however, become simpler. Thus, the costs for solving
problems remain roughly the same.

We may regard the model of Fig. 14, 15 as a refinement of the previous model in
which the information about modes is not represented by entries in pairs («, m) but
by the location of items of sort ©# (elimination of m).
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The ‘dual’ refinement is shown in Fig. 16, 17 (elimination of ). Without further
explanations we shall start to solve the two problems for this model:
Vu'ela,b,cliiTos M=m o M(Hu')+¢ e M(Wu')+¢ o M(Lu"
+¢ ¢ M(Du') =m e £=i' o M,.

(1) Assumption: Vu'c{a, b, c}: M(Hu')=M(Uu')=M(Du')=0.
So: VYu'ela, b, c}: M(Wu')=n,ym.

Wa Ua Qa W
Ha( @ }—%={1a —ﬁ-O—'EoZo“ i T ol 30 —"‘*(}—'3- 4a

Fi{m) Fim)
R (@@
F(m) F(m)
Hb riE—rO—nT’ 2R m ‘3b‘—${)—ﬁ‘ 4b
. Wb Ub Db
Fim) ] \th)
r )
¢ Wc Uc D¢
Hc .)"E"’ 1c m m 2¢c ‘r—-m-l m k]9 ——E‘OJ"LC
Fig. 16.

la 2a 3a 4a |1b 2b 3b 4b {1c 2¢ 2¢ 4c|in ib ic | |Mp

Ha -~ 4
Wa m —m

Ua m —-m

Da m ~-m

F(m),

®w N F

F(m)

§
3
!
3 3
RN

Hc - I'4
We m —m

Jc m —m

Dc m -m
R —F(m) F(m) ~F(m) F(m) -F(m)  F(m) m |2«

F(m)

ww w3

| ltm tm im

Fig. 17.
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Interpretation: Am-, my, msefe, s}: M(Wa)=mi A M(Wb)=man M(Wc)=m;
iTe M=F(n)e M(Ua)+ F(m)e M(Ub)+F(m) e M(Uc)+m « M(R)

=mel2¢=j" e« M, (C2)
(2)

(2) Assumption: M(R) =2¢.

So:

O0<F(m)e (M(Ua)+M(Ub)+M(Uc))=(m—m) e 2¢,
M(Ua)=MUb)=M(Uc)=0 because of |[F(m)|=1.

Comparing this representation with the first one we observe again that the size of
the net is !arger and the formal costs are nearly the same. The common refinement of
the models of Fig. 14, 15 and Fig. 16, 17 is the net of Fig. 7 shown in the previous
section. This net is a place/transition-net the size of which is considerably larger than
the size of the net in rig. 9. Even without the incidence matrix of Fig. 7 the <olution of
the two problems should be easy to follow:

Vu'ela, b, c}: it e M = M(Hu')+M(Wu'e)+ M(Wu's)+M(I'i:'e)
+MUu's)+ M(Du'e)+ M(Du's) (DY)

=1=iT ¢« M,.
(2)

" (1) Assumption: Vu'e{a, b, ciVm'ele,s}: M(Hu') = M(Uu'm'y=MDu'm') =
0.
Sc:Vu'efa, b, c}: M(Wu'e)+ M(Wu's)=1.

i¥ » M =2[M(Uae)+M(Ube) + M(Uce)]
+[M(Uas)+ M (Ubs) + M (Ucs)] (D2)

=2= ] T e M.
2)

(2) Assumption: M(R)=2.

So:VYu'e{a. b, c]Nm'efe, s}: M(Uu'm')=0.

Here we finish our play with the caiculus of S-invariants on the several levels of
detail of system representation. In the next section, we shall apply the modsiling and
analytical apparatus presented so far to a more interesting problem: The verification
of a given scheme for o1ganizing a distributed data base.

4. The analysis of a distributed data base

Fig. 18 shovs the PrT-net model of the organization scheme of a duplicate
database system. It is Milne’s modification [13] of a model de.igned by Ellis [2].
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In this example, cach of n data base managers in responsible for one copy of the
database. We assume that they are equally organized w.r.t. managing their copy (but
nothing is assumed, for exampie, about their relative speeds). Furthermore, we
assume that any two requests are in conflict with each other, i.e. only on<¢ data item or
one resource is under consideration. This restriction focusses on the most difficult
part of modelling an organization scheme for duplicate data base systzms. Treating
the general case of several data items would be beyond the scope of this paper.

In the PrT-net of Fig. 18 the dynamic behaviour of all the n database managers is
represented. (For sake of comprehensibility, the diagram has been divided into
several parts and several places appear more than once; ‘sideconditions’ are used to
keep the net as small as possible.) The net is the result of folding together »
isomorphic place/transition nets each representing one database manager.
Consequently, in Fig. 18 we have to distinguish between the behaviour of different
managers by means of the marking. The initial marking M, and its foliower markings
M € [M,) (M, € [M,] by convention) are defined by means of two inite sets, U and N.
where the number of elements of U shall be n and N =(U X U) ~-id.

U is a set of individual symbols, the identifiers of the database managers. Every
{5, r)€ N is a request initiated by s (sender) for communication with r (receiver); for
any given s, N, = N n({s}x U) contaius all requests belonging to s. The initial
marking Mj is given by Mo(passive):= 7 (U) =Y u|u € U, Mo(HOME):=#(N) -
Y. (u, v}|u, ve U nu+# v, all other places are unmarked. The transitior : b1, b2, b3
serve as representations of the users. When firing, b1 puts s € U on place INTREQ.
This describes that a user of database manager s wants to change (uniformly) all
copies of the database. If this ‘interral’ request has been executed or rejected, the
user receives a corresponding message, namely the same se€ U via DONE or
REJECT, by firing b2 or b3, respectively. It is reascnable to attach capacities to the
places INTREQ, REJECT, and DONE whereby, for every s € U, the number of
copies of s on the respective place is limited. So, for s € U, the capacities model the
size of the user queues in database s.

We will explain now very briefly how the model works. First we show that always
{(under every marking) every manager is in som= state and every request is at some
location:

Proposition 4.1. Ler M e [M,]; then
(a) M (pass.)+ M act.) +M (soak.) + M (updat.) = Mo(psss.) = 7(U).
(b) M(HOME)+M(EXTREQ)+M(ACK+)+M (ACK-)
+M(ACKb) + M (UPD) + M (ACKd) = My(HOME) = w(N)

Proof. There exist two $-invariants I1 and I2 with
I1(pass.) =I1(act.) = Ii(soak.) = I1(updat.) = 1,
I1(p)=0 for all other places p,
I2(HOME) = I2(EXTREQ) = I2(ACK + ) = I2(ACK —)
=[12(ACKb) = I2(ACKd) =12(UPD) =1,
12(q)=0 for all other places q.
(a) and (b} are evaluations of (2) for I1 and I2.
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To trace an internal request for 2 manager k we start with the firing of transition 1.
By doing so & goes from state passive to active and its requests (%, i), licelUi#k),
are put on EXTREQ, which means that they are sent to all other managers i, i # k, as
external requests. Then two possibilities are conceivable:

(1) k gets a positive acknowledgement from all the other managzrs. Then the
corresponding marking M’ enables transition 2: k<M'(active)r m(Ni)<
M'(ACK +). By finng of transition 2 k goes from active to updating and for every
ie (U —-{k}) the request {k, i) is again sent to i, but now as an update request;
furthermore we assume that k performs the update in database k. In database i # k
the corresponding update is performed by firing of transition 14, 4, 10 or 12,
depending on manager i’s current state. After all managers have p-rformed this
update as requested by k, the requests (k, i), (i € U, i'# k), are collected on place
ACKd. So transition 13 is enabled and by its firing k changes bock to passive and the
requests are put back to HOME. Mcreover, one copy of & is 1t on DONE as an
acknowledgement for the user that ‘its’ update is performed ir all copies of the
«fatabase.

(2) Incase one manag.r, say j # k, is unable or unwilling to petform k’s request as
soon as possibie, he sends a negative acknowledgement back to k: ie. it fires
transition 5 for m =r =j putting (s, r) = (k, j) from EXTREQ to ACK-. Now for %
on active transition 3 is enabled. By firing it k goes from active to soakin,, andits user
gets a negative acknowledgement in form of a copy of k on REJECT. In state soaking
k collects ull requests on ACKb by firing transition 8 and/cr transition 7
(repeatedly). Then, by firing of transition 9, it goes back to passive and the requests
(k,i), (ie U,i#k), are put back to their homeposition HOME.

The rest of the model shall be described from the receivers point of view. In case a
manager j is in state passive or soakirc and receives an external raquest (k, j) on
EXTREQ, it grants by tiring transition 15 or 11. In case j is in state active thereis a
conflict between j and k. Firiag transition 5 means not granting k’s request by putting
(k,j> on ACK~- as a negative acknowledgement; firing transition 6 means for j
abandoning its request in favour of k by changing to soaking, putting (k, j) on ACK+,
and a copy of j on REJECT tc inform tt.e user. If j is in state updating, it does not take
notice of ¢ ternal request (k, j) on EXTREQ until being back in state passive. In any
state, however, j has to notice 2n update request (%, j} from & on UPD, to perform
the update requested by k. and to put (k. /) on ACKd as an update acknowledgement
for &.

We are now prepared to formulate sume results about the model. To start with, we

state a result about a synclironization of a manager k and the requests (k, i),
(ie U, i#k), initiated by k:

Proposition 4.2. Let M e[ M,]; then
k < M (passive) & #(N,)< M(HOME),
k < M (active) + M (sosking) < 7 (N,)
< M(EXTREQ) + M(ACK+)+M(ACK-)+M(ACKb),
k < M (updating) < =(N,) < M(UPD) + M (ACKd.
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Before we prove this, we interpret it by dividing the places of 11 UIZ2 into three
‘request regions’: no reauest region (NR), external request region (ER), update
request region (UP):

NR N I1 = {passive}, NRnI2 := {HOME},

ER nI1 := {active, soaking},

ERNI2 = {EXTREQ, ACK+, ACK—, ACKb},

URNI1 = {updating}, URANI2 :={UPD, ACKd}.
(Here we have identified the S-invariants I1, I2 with the sets of places they pass
through.)

Proposition 4.2 then states that a manager k is in one of these request regions if,
and only if, all its requests (&, i}, (i € U, i # k), are in the same region.

Proof. The stated property holds for M. (trivial). It is preserved by transitions 1, 2, 9,
and 13, which are the only changes froin one region into another.

For applying the organizaticaal scheme it is important to know whether it is
deadlockfree and consistent.

Theorem 4.3 (liveness). Under any marking M €[M,] there exisis an enabled
transition.

Proof. First let us mention that this statement is non-trivial in the case of finite
capacities for INTREQ (for every ke U). Because of Proposition 4.1 eveiy
manager is always in one of four states. Let k be a given inanager, and
Me [Mo]:
(1) k < M (passive) => w(N,) < M(HOME) because of Proposition 4.2.
Notice now that there is for every s € U a positive capacity for INTREQ:
k < M(INTREQ) = transition 1 is enabled,
k £ M(INTREQ) = transition b1 is enabled.
(2) k= M(active) = #(N) = M{EXTREQ)+ M(ACK+)+ M(ACK-)
+ M (ACKDb) because of Proposition 4.2.
(2.1) =3j: (%, j)<s M(ACKb) because putting (k,j) on ACKb is only
possible for k < M (soaking).
(2.2) w(N)sM{ACK+)+M(ACK-);
w(N,) < M(ACK+) = transition 2 is enabled,
3j: (k, /)< M(ACK-) = transition 3 is enabled.
(2.3) 3j:(k, j)s M(EXTREQ);
j < M (pass.) + M (act.)
*+ M (soak.) = one of transitions i85, 5, 6, 11 is enabled;
J < M (updat.) see (4) below.
(3) k =< M(soaking) => w(N,)
s M(ACK+)+M(ACK-)+M(ACKb)+M(EXTREQ)
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(3.1 (¥ =~ M(ACkb)= transition 9 is enabled,
(3.2) 3Fj (&, = M(ACK++M(ACK-)=>transition 7 or 8 is enabled.
(3.3) 3,:(k, )< M(EXTkrQ) see (2.3) above.
(4) k < M (uspdating) = 7(N,) < M(UPD) + M(ACKd).
(4.1) =(N.)<M(ACK 1) = transition 13 is enabled,
(4.2) Tj:{k, j)<M(UFD)=>one of the transitions 14, 4, 10, 12 is enabled
tor ; (because of Proposition 4.1 applied to j).

Corsis: . ..., means for the mode! under consideration that after every completc
updatz the n conies of the database are identical. Under the assuinption that the
model is ~onsistzat for the initial marking M), the nexi theorem guarzatees consis-
tency:

Theorem 4.4 {(consistency). For any M € [My] and K e U:
k < M (updating) = i< M (vpdating), (icU,i#k)

Pcoof. Let k <M (updsting) and (i, k) < M(EXTREQ); then (i, k) cannot leave
EXTREQ for ACK+ because transition 6 is not enabled. So it is impossible to bring
both & and / to place updating.

As a consequeiice of Theorem 4.4 transition 12 turns out to be use'ess for the
model in its present form. Transition 12 would, however, be necessary 1 the model
would be refined by adding further resources, thus granting concurrent updating.

We will finish our analysis of the scheme with some critical remarks using a
catalogue of propertie; of a ‘good’ solution given by Ellis [2]. The model is
homoge neous (all managers have essexntially identical control programs), speed
independent, deadlockfree, consistent, functional (in applications there are no
restrictions concerning data and functions).

The model is, however, not free from critical blocking. Even for two managers this
can be shown easily. Let U = {q, b}, N ={(a, b), (b, a)}. In case both have sent au
external request to each other the current marking is M where M (active) = a + b,
M(EXTREQ) ={(a, b)+(b, a). So we observe a double activation for transitions 5
and 6. If transition S fircs twice, for the follower marking M' M'(active) =a + b,
M'(ACK~)=(a, b} + (b, a) hola:. No updating can be performed before at least one
manager has beer. back in pacsive. If under M transition 6 fires twice for the follower
marking M" M"(soaking) = ¢ + b holds. Again, no updating can be performed before
@ or h has been back to passive. Because this double firing of transition 5 or 6 can be
repeated without any intermediate updating, the possibility of critical blocking has to
Ve taken into account. But this drawback can be eliminated by adding mechanisms
guaranteeing fair schedules. According to Theorem 4.3 deadlock freeness is guaran-
teed for any resolution of conflicts between competing requests.

As a major drawback the lack of partial operability (cf. [2]) has to be viewed. Let,
again for two managers, M (active) = a + b, M{EXTREQ) = {(a, b) + (b, a). Now we
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assume b abandoning its request in favour of a by firing transition 5. Then the current
marking is M"” where M"(active)=a, M"(soaking)=b, M"(ACK+)={a. ),
M" (EXTREQ) = (b, a). If now a does not send (b, a) back to b, by firing transition 5
putting (5, a) on ACK—, b starves. In case of a crash of manager a the system dies - a
violation of partial operability.

5. Conclusion

We have presented a new technique for modelling organizational systems which
adds to the descriptive and znalytical power of Prtri nets a new dimension: the formal
treatment of individuals and their changing properties and relations. The technique
provides a whole spectrum of degrees of abstraction such that the user is no longer
forced to deal with larger systems at an unacceptahle ievel of detail as it could happen
with ordinary Petri nets. Aspects of the modelled systems which dare of no immediate
concern can be transferred into parameters as, e.g., the actual number of identical
components ruled by an organizational scheme.

The step from ordinary Petri nets to our predicate/transition-nets was strongly
influenced by the development leading from propositional to first-order predicate
logic (which is an integral part of our language about systems due to the notior of
facts). Accordingly, the linear-algebraic techniques for analyzing Petri nets were
raised to the new level by means of integer functions generalizing the integers.

Within the development of the General Net Theory of processes and systems, the
purpose of our work is to connect the conceptuai and mathematical foundations of
the theory closer to the levels of practical systems organization. We hope that we
have achieved scme progress in this direction.
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