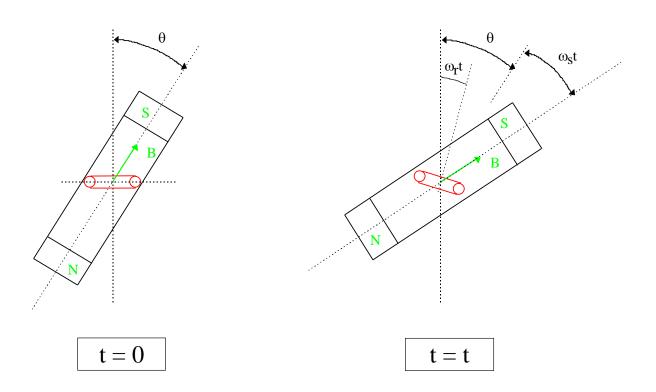


MOTORES DE INDUÇÃO II Partida e Operação

- 1. Problemas associados à partida de motores trifásicos de indução
- 2. Conjugado desenvolvido pelo motor
- 3. Corrente absorvida pelo motor
- 4. Métodos de partida
- 5. Parte experimental

1. Problemas associados à partida de motores


- correntes elevadas durante a partida (5 a 10 vezes a corrente nominal)
- rotor parado

 motor em curto-circuito

 (não há conversão de energia)
- interferência com o sistema de proteção
- o conjugado de partida pode não ser suficiente para acelerar a carga mecânica
- o motor não parte

2. Conjugado desenvolvido pelo motor

O fluxo concatenado com o rotor varia no tempo:

$$\phi = SB_{max} \cos[(\omega_s - \omega_r)t + \theta] = \phi_{max} \cos[(\omega_s - \omega_r)t + \theta]$$

Tensão induzida e corrente circulante na espira, devidos a ϕ variável no tempo:

$$e = -N\frac{d\phi}{dt} = E_{max}\cos\left[\left(\omega_s - \omega_r\right)t + \theta - 90^\circ\right]$$

$$i = I_{max} \cos[(\omega_s - \omega_r)t + \theta - 90^\circ - \varphi]$$

Força atuante na espira, resultado da interação entre a indução B e a corrente i:

$$F = |\vec{F}| = |\vec{B}|il$$
 (ang. entre \vec{B} e $i = 90^{\circ}$)

$$F = BlI_{max} \cos \left[\left(\omega_s - \omega_r \right) t + \theta - 90^\circ - \varphi \right]$$

Demonstra-se que o conjugado <u>médio</u> é dado por:

$$C_{medio} = \frac{s \omega_s \phi_{max}^2}{Z} \cos \varphi$$

$$com Z = \sqrt{R^2 + s^2 X^2} ; X = \omega_s L$$

Expressão final do conjugado:

$$C(V, s, R) = KV^2 \frac{sR}{R^2 + s^2 X^2}$$

Análise da curva de conjugado

a) rotação síncrona: s = 0 e C = 0

b) partida:
$$s = 1$$
 e $C_p(V, R) = KV^2 \frac{R}{R^2 + X^2}$

c) conjugado máximo:

$$\frac{dC}{ds} = 0 \implies C_{max} = \frac{KV^2}{2X} \quad (independe \ de \ R)$$

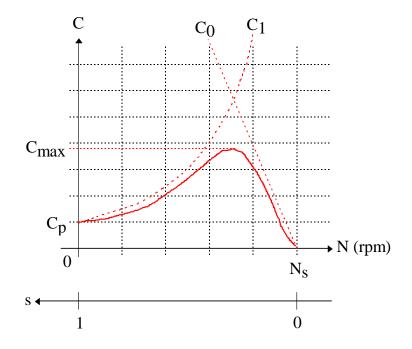
$$s_{Cmax} = \frac{R}{X}$$

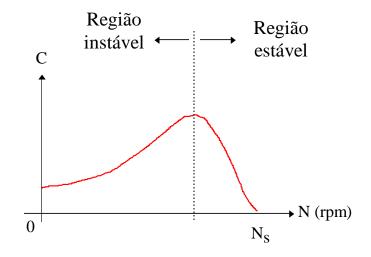
$$C(V, s, R) = KV^{2} \frac{sR}{R^{2} + s^{2}X^{2}}$$

d) s próximo de 1:

$$R^2 << s^2 X^2$$

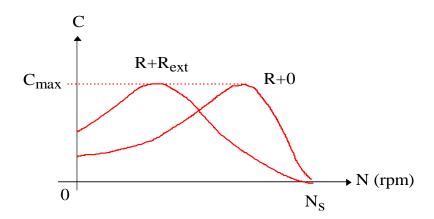
$$\therefore C_1 \cong KV^2 \frac{R}{sX^2}$$


e) s próximo de 0:


$$R^2 >> s^2 X^2$$

$$\therefore C_0 \cong KV^2 \frac{s}{R}$$

Curva do conjugado em função do escorregamento

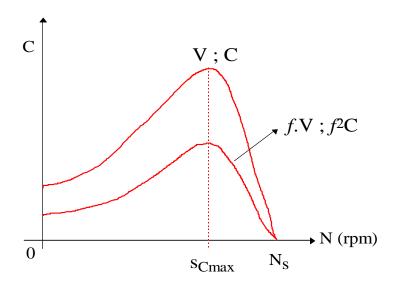


Variação de *C* com *R*

$$C_{max} = \frac{KV^2}{2X}$$
 (independe de R)

$$C_p(V,R) = KV^2 \frac{R}{R^2 + X^2}$$

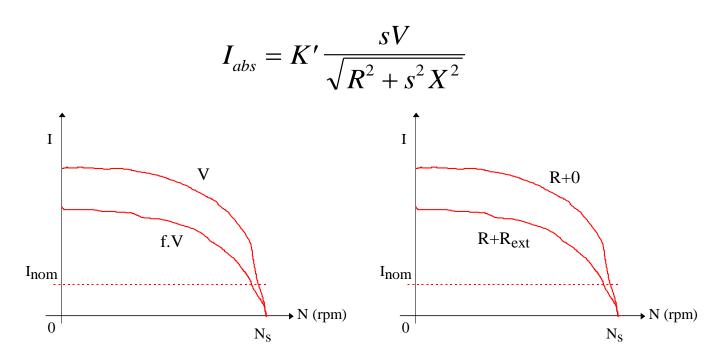
Inserindo-se resistência externa R_{ext} no rotor :


- C_{max} se mantém constante
- s_{Cmax} aumenta
- C_p aumenta

Variação de *C* com *V*

$$C_{max} = \frac{KV^2}{2X} \; ; \; s_{Cmax} = \frac{R}{X}$$

$$C_p(V,R) = KV^2 \frac{R}{R^2 + X^2}$$


Multiplicando-se a tensão de alimentação por um fator f:

- o conjugado é multiplicado pelo fator f^2 em toda a faixa (inclusive C_{max} e C_p)
- s_{Cmax} permanece constante

3. Corrente absorvida pelo motor

Demonstra-se que a corrente absorvida pelo **estator** é dada por:

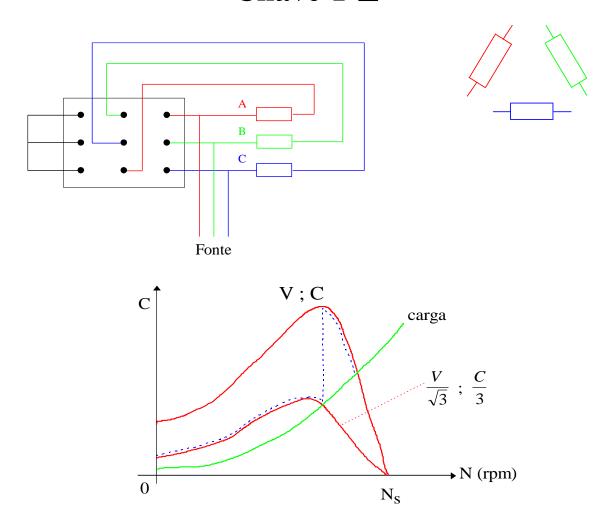
- a corrente varia proporcionalmente com a tensão de alimentação
- aumentando-se R_{ext} , a corrente absorvida **diminui**

4. Métodos de partida

a) Chave Y-Δ

o motor parte com o estator ligado em Y e após aceleração é ligado em Δ

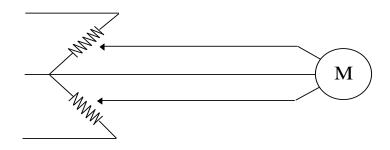
b) <u>Compensador de partida</u>


o motor parte com tensão reduzida (0,6 a 0,7 V_{nom}) e depois a tensão é aumentada até 1,0 V_{nom}

c) Reostato de partida

o motor parte com um elevado valor de R_{ext} , o qual é diminuido até o valor 0

Chave Y-∆



- Lig. em Y: tensão multiplicada por 1/1,732 e corrente de linha e conjugado multiplicados por 1/3
- método aplicável a todos os motores (rotor em gaiola ou bobinado). A carga deve ter baixo conjugado de partida

Compensador de partida

Autotransformador com relação de transformação variável entre 0,6 e 1,0

- o autotransformador reduz a tensão de entrada no motor
- aplicável a qualquer tipo de motor (rotor em gaiola ou bobinado)

Reostato de partida

- aplicável somente a motores com rotor bobinado

5. Parte Experimental

Medição de correntes e conjugados

- 5.1 Chave Y- Δ : ligação em YY/ Δ Δ
- 5.2 Reostato de partida
- 5.3 Corrente e conjugado de partida com tensão reduzida (demonstração)
- 5.4 Ensaio em carga (demonstração)