LABORATÓRIO DE ELETROTÉCNICA GERAL

MOTORES DE INDUÇÃO II - PARTIDA E OPERAÇÃO Código: MOT2

RELATÓRIO

NOTA	
•••••	

Grupo:	 	 	 	
			Profess	
Objetivo:	 	 	 	
•			••••	

1. EQUIPAMENTOS

- 1 motor trifásico de indução, rotor bobinado, com a seguinte especificação:
 - . 3 HP, 60 Hz, 4 polos, 1700 rpm, $\cos \#\#\# = 0.82$;
 - . 12 terminais;
 - . Tensão nominal de cada bobina: 220 V;
 - . Corrente nominal de linha na ligação duplo-triângulo (220 V): 8,8 A;
- Fonte de alimentação trifásica 127/220 V, 60 Hz;
- Chave de faca tripolar de reversão;
- 1 amperímetro de alicate com possibilidade de medição de corrente máxima ("Peak Hold");
- Reostato de partida.

2. PROCEDIMENTO EXPERIMENTAL

2.1 - Chave Estrela-Triângulo - Ligação do motor

Ligue os terminais do **rotor** em curto-circuito. Ligue as bobinas de cada fase do **estator** em paralelo: na Figura 2.1, coloque chapa metálica entre os terminais 1 e 7, 4 e 10, 2 e 8, 5 e 11, 3 e 9, 6 e 12 (a numeração dos terminais foi feita de acordo com as regras usuais). Nestas condições, o terminal ponto da fase A é composto pelos terminais 1 e 7; o terminal ponto da fase B é composto pelos terminais 2 e 8, e o terminal ponto da fase C é formado pelos terminais 3 e 9.

Marque na Figura 2.1 as chapas metálicas instaladas e os terminais ponto das 3 fases.

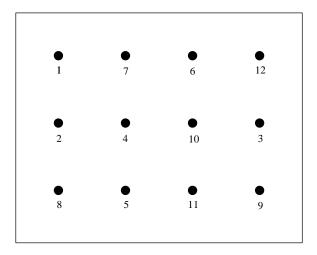


Figura 2.1 - Terminais do estator

Ligue agora os terminais do estator à chave reversora tripolar de acordo com a Figura 2.2. Note que na ligação estrela os terminais não-ponto das 3 fases constituirão o centro estrela. Note também que na ligação triângulo o terminal ponto de uma fase qualquer estará ligado ao terminal não-ponto de outra fase.

Marque na Figura 2.2 os terminais ponto das 3 fases, e ligue os mesmos a cada uma das fases da fonte trifásica de alimentação. Como as bobinas de cada fase foram ligadas em paralelo, esta montagem permite que o motor opere nas ligações dupla-estrela e duplo-triângulo.

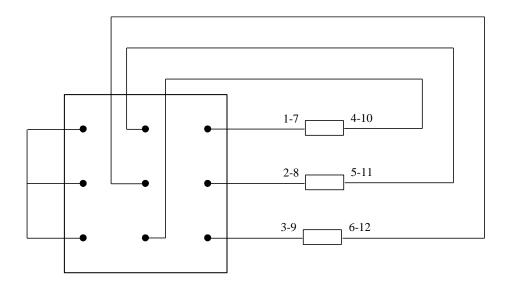


Figura 2.2 - Chave reversora tripolar utilizada como chave estrela-triângulo

Deixe a chave estrela-triângulo na posição estrela. Energize o motor com tensão de linha igual a 220 V e, após sua aceleração, mude a chave para a posição triângulo.

2.2 - Ligação dupla-estrela

Mantendo a chave estrela-triângulo na posição estrela, efetue a partida do motor. Meça a corrente de partida e a corrente de regime em vazio com um amperímetro de alicate.

Obs.: para medir a corrente de partida, aperte o botão "Peak Hold" no amperímetro de alicate com o visor do aparelho registrando corrente nula. O amperímetro medirá e apresentará o valor máximo (eficaz) da corrente durante a partida do motor.

Corrente de partida:	A;
Corrente de regime em vazio (após	a partida do motor): A

2.3 - Ligação duplo-triângulo

Mantendo a chave estrela-triângulo na posição triângulo, efetue a partida do motor. Meça a corrente de partida e a corrente de regime em vazio.

Corrente de regime em vazio (após a partida do motor): ______ A.

Compare os valores das correntes de partida e de regime para as ligações estrela e triângulo:

- partida: $\frac{I_{P_{\Delta}}}{I_{P_{Y}}}$ =
- regime: $\frac{I_{R_{\Delta}}}{I_{R_{V}}}$ =

2.4 - Reostato de Partida

Deixe a chave estrela-triângulo na posição triângulo. Insira o reostato de partida no rotor da máquina (substituindo as chapas que curto-circuitavam o rotor), e proceda à sua partida, mantendo o reostato em 3 posições:

- a) posição 0 do reostato (correspondente à inserção de toda a resistência). Meça a corrente de partida e a corrente de regime em vazio.
- Corrente de partida: _____ A;
- Corrente de regime em vazio: _____ A.
- b) posição intermediária do reostato (correspondente à inserção de metade da resistência). Meça a corrente de partida e a corrente de regime em vazio.
- Corrente de partida: _____ A;
- Corrente de regime em vazio: ______ A.
- c) posição 1 do reostato (correspondente à eliminação da resistência rotor em curtocircuito). Meça a corrente de partida e a corrente de regime em vazio.
- Corrente de partida: _____ A;
- Corrente de regime em vazio: ______ A.

3. DEMONSTRAÇÃO

3.1 - Corrente e Conjugado de Partida com Tensão Reduzida

Para o motor montado na bancada demonstrativa, meça a corrente e o conjugado com o *rotor bloqueado*, para o motor na ligação duplo-triângulo e alimentado com tensões de 65 V e 100 V.

- tensão de alimentação: 65 V

$$I_p =$$
_____ A $C_P =$ _____ N.m

Obs.: o valor de conjugado C_P é obtido por: $C_P = V_{BAL}$ 9,8b, em que V_{BAL} é o valor lido na balança (descontado do valor inicial da balança) e b = 0,43m (braço).

- tensão de alimentação: 100 V

$$I_p = \underline{\hspace{1cm}} A \qquad C_P = \underline{\hspace{1cm}} N.m$$

A partir destes valores, obter os valores correspondentes para a tensão nominal:

$$I_p(220) = I_p(65) \left(\frac{220}{65}\right) =$$
 $C_p(220) = C_p(65) \left(\frac{220}{65}\right)^2 =$

$$I_p(220) = I_p(100) \left(\frac{220}{100}\right) =$$
 $C_p(220) = C_p(100) \left(\frac{220}{100}\right)^2 =$

$$\frac{I_p(220)}{I_N(220)} = \frac{1}{8,8} = \frac{1}$$

3.2 - Ensaio em Carga

Para o motor alimentado com tensão de 100 V, meça os valores de corrente, potência absorvida, rotação e conjugado e complete a Tabela 1.

Situação	Corrente I (A)	Potência absorvida P _{ABS} (W)	Velocidade N (rpm)	Balança Vbal (kgf)
vazio				
I = 2 A				
I = 3 A				
I = 4 A				
conj. máximo				

Tabela 1 - Dados do ensaio em carga

Com os dados da Tabela 1, complete a Tabela 2.

Situação	Fator de Potência	Pot. mecânica (W)	Rendim. (%)	Escorreg. (%)
vazio				
I = 2 A				
I = 3 A				
I = 4 A				
conj. máximo				

Tabela 2 - Resultados do ensaio em carga

Obs.:

- fator de potência:
$$\cos \varphi = \frac{P}{S} = \frac{P_{ABS}}{\sqrt{3} \ 100 \ I}$$

- potência mecânica:
$$P_{\text{\tiny MEC}} = C \omega = C \left(\frac{2\pi}{60} \right) N$$
, com $C = V_{\text{\tiny BAL}} 9.8b$

- rendimento:
$$\eta = \frac{P_{MEC}}{P_{ABS}} 100$$

- escorregamento:
$$s = \frac{N_s - N}{N_s} 100$$

3.3 - Conjugado de Partida

Utilizando o reostato de partida, verificar o "deslocamento" da curva de conjugado do motor, partindo o motor com o reostato em diversas posições.

4. QUESTÕES BÁSICAS

4.1 -	Dispõe-se de um trifásico de 380 V e um motor de seis terminais externos,
	com tensões 220/380 V. Qual o método de partida a ser utilizado, sabendo-se
	que o motor parte em vazio?

R.	 								

4.2 -	Partindo-se um motor de indução ligando-o diretamente à rede, sem nenhum dispositivo de partida, o que ocorrerá?
	R
4.3 -	Por que em algumas aplicações de partida de motor não se pode utilizar a chave estrela-triângulo, mas se deve utilizar um compensador de partida?
	R
4.4 -	O que se entende por motor de indução com rotor bobinado que parte com conjugado nominal?
	R
4.5 -	Qual é o procedimento para a partida de um motor de indução com rotor bobinado?
	R

4.6 -	Partindo-se um motor em triângulo ele absorve 300 A da linha. Qual a corrente que o motor absorverá se o mesmo partir em estrela? O que ocorrerá com o conjugado desenvolvido pelo motor?							
	R							
4.7 -	Alimentando-se o estator de um motor de indução com rotor bobinado com tensão nominal e deixando-se o rotor em circuito aberto, ele partirá? Por quê?							
	R							
5. CO	NCLUSÕES							
•••••								
•••••								
•••••								
•••••								
•••••								
•••••								