
The first object-oriented analysis techniques
were proposed more than 10 years ago. The
Object-Oriented Systems Analysis (OOSA)
technique [12] adopts the Entity-Rela-
tionship (ER) model to capture the
declarative aspects of a software system.
This was soon followed by two new pro-
posals, Object-Oriented Analysis [3] and the
Object-Oriented Modeling Technique
(OMT) [11], which support the modeling of
declarative, behavioral as well as interactive

aspects of a software system. Today, there are dozens
of like-minded techniques and commercial tools
founded on the OO way of thinking that support
development from requirements analysis to imple-
mentation. Indeed, the great promise of OOA is that
the whole software development process can be
streamlined and simplified by having the same
building blocks (objects, classes, methods, messages,

inheritance and the like) used in all phases of
development, from requirements to implemen-
tation. A recent proposal, the Unified Model-
ing Language (UML)—see www.rational.
com/uml—attempts to integrate features of
the more preeminent models in OOA,
thereby enhancing reusability and consoli-
dating the growing OOA market.

Why is OOA popular? In a nutshell,
because it significantly advances the state of

practice in requirements modeling. The prac-

The growing influence of object-oriented programming on programming practice

has led to the rise of a new paradigm for system and software requirements analysis, popularly

known as object-oriented analysis (OOA). This paradigm adopts ideas from object-oriented

programming and blends them with ideas from semantic data modeling and knowledge repre-

sentation (notably semantic networks) into a

modeling framework that is more powerful

than traditional techniques such as data flow

diagrams, structured analysis, and the like.

COMMUNICATIONS OF THE ACM January 1999/Vol. 42, No. 1 31

John Mylopoulos, Lawrence Chung, and Eric Yu

From Object-Oriented
to Goal-Oriented

Requirements
AnalysisGoal-oriented and

object-oriented analysis
should be seen as complementary,
the former focusing on the
early stages of requirements analysis …
the latter on late stages.

32 January 1999/Vol. 42, No. 1 COMMUNICATIONS OF THE ACM

tice of systems analysis was characterized 10 years
ago by a mixed bag of isolated modeling techniques
(data flow diagrams, ER diagrams, state transition
diagrams) that were used to capture the rich infor-
mation that needs to be modeled, analyzed and
understood before a software system is actually built.
These techniques generally offered little help for
structuring requirements models, to ensure that they

were readily understandable, extensible and
amenable to analysis. In contrast to this situation,
OOA techniques offer a coherent framework which
integrates a comprehensive set of modeling concepts
for capturing declarative, behavioral, and interactive
aspects of a system.1 In addition, OOA techniques
strongly support two structuring mechanisms, gen-
eralization and aggregation, in terms of which a
modeler can organize and manage the immense
amount of information captured by her models. A
final important reason for the popularity of OOA
techniques rests with the popularity of OO pro-
gramming itself. Earlier requirements analysis tech-
niques were inspired by, and founded on, structured
programming concepts. In a programming world
that is increasingly turning to object orientation,
such techniques seemed out of date and had to be
replaced.

Since OOA techniques are intended for require-
ments analysis,2 the models built in terms of these
techniques comprise models of a real-world environ-
ment within which the new system will eventually
operate, that is, an environment consisting of peo-
ple, work processes, material things, software sys-
tems and the like. For example, Figure 1 models
aspects of a hospital setting, such as patients and

physicians. In the figure, a rounded
rectangle refers to a class of objects,
whose name, attributes and services
respectively appear in the upper, mid-
dle and lower part of the rectangle; a
semi-ellipse specifies one or more spe-
cializations of a class, a solid arc
denotes a relationship between
classes; and a broken arrow indicates
that one class uses a service from
another. According to the figure, the
class Patient has one attribute,
physician, and no associated ser-
vices, as well as two specializations,
OutPatient and InPatient.
Moreover, InPatient has two addi-
tional attributes, room and bed,
two services, visitPhys(ician)
and takeTest, and is related to

PatientRecord through a one-to-one relation-
ship. During requirements analysis the use of such
diagrams, along with natural language, ensures that
different stakeholders (patients, hospital manage-
ment, requirements analysts, hospital staff, and so
forth) agree on the relevant objects and relationships
(and other things, such as hospital procedures and
policies.) During system design, some of the classes
in the requirements model may need to be projected
into a design. For example, if the new system needs
to keep track of information about physicians, then
the design may include a class PhysicianInfo
which will represent information about physicians
through its instances. Note that the Physician-
Info class, which describes a component of the sys-
tem design, may not have the same attributes or
services as the Physician class, which models one
aspect of a hospital setting in the real world.

Any modeling technique “colors” the view of its
users because it offers only a limited number of
primitive concepts for modeling its intended subject
matter. The kinds of information that can be cap-
tured by the analyst are then characterized by pre-
cisely these concepts. The purpose of this article is to
offer a sketch of the concept of the softgoal, for mod-
eling and analyzing non-functional requirements,
and to show how this can contribute toward a foun-

1 0.1

1

0.m
Physician gets
data from
PatientRecord

Physician, InPatient
use each other's
services

PatientRecord
visits
tests
getData

Physician

examine
report

InPatient
room
bed
VisitPhys
takeTest

OutPatient
lastvisit
nextvisit

Patient
physician

Figure 1. A small portion of a hospital model for
requirements analysis

1See [9] for a discussion of how OOA modeling features improve on their
structured analysis predecessors.
2Actually, most OOA techniques address both requirements analysis and
design, often with little to say about the boundary between these two
important software development phases; for our discussion, we focus exclu-
sively on requirements analysis.

dation for a goal-oriented requirements analysis,
which complements and enriches OOA.

Non-functional requirements (or quality attributes,
qualities, or more colloquially “-ilities”) are global
qualities of a software system, such as flexibility,
maintainability, usability, and so forth. Such require-
ments are usually stated only informally, are often
controversial (for example, management wants a
secure system but staff desires user-friendliness), are
difficult to enforce during design and implementa-
tion, and are diffcult to validate. Not surprisingly,
unmet quality requirements constitute an important
failure factor for software development projects.

Modeling the World
Since computer applications must ultimately be use-
ful in the real world, modeling a part of that world,
the application domain, has been a major preoccupa-
tion in several areas of computer science, such as
data modeling in databases, knowledge representa-
tion in artificial intelligence (AI) and requirements
modeling in software engineering. Over the years,
hundreds of notations, often referred to as concep-
tual or semantic models, have been proposed for such
modeling tasks. In general, a conceptual model com-
prises a collection of:

• Primitive terms, which specify a set of basic build-
ing blocks for constructing symbol structures;

• Structuring mechanisms for assembling and orga-
nizing symbol structures;

• Primitive operations, for constructing and query-
ing symbol structures;

• General integrity rules, which define the set of
consistent symbol structure states, or changes of
states. These are accompanied by interpretation
rules and usage guidelines.

For example, Peter Chen’s original ER model offers
Entity, Relationship and Attribute as
primitive terms, supports a limited form of classifi-
cation (because entities and relationships are
instances of entity and relationship types), offers
primitive operations for creating new entity or rela-
tionship types or instances thereof, and supports car-
dinality constraints for relationships, such as “every
child has up to two parents.” An important exten-
sion of the model, the Extended Entity-Relationship
model, supports all the features of the ER model and
also offers generalization and aggregation for struc-
turing purposes. The ER model was proposed at the
first Very Large Databases conference in 1975. The
ER model is one of the first semantic data models
because it assumes that the domain to be modeled

consists of entities and relationships, unlike the rela-
tional model, which makes no assumptions at all
about the domain.

In the field of AI, semantic networks were pro-
posed almost 10 years earlier by Ross Quillian’s
Ph.D. dissertation (completed in 1966), as suitable
symbolic models of human memory. Semantic net-
works are directed, labeled graphs whose nodes rep-
resent concepts while links represent binary
relationships. Quillian’s proposal actually supported
generalization as a structuring mechanism, and also
provided for inheritance of attributes. Semantic net-
works were upgraded with procedural attachments
and other facilities to form frame-based knowledge
representation languages. Along a different path,
they were combined with a logical sublanguage for
specifying formal properties of defined classes and/or
tokens. Description logics, a popular form of knowl-
edge representation language today, originated from
this line of research.

In software engineering, Douglas Ross proposed
the Structured Analysis and Design Technique
(SADT™) in the mid-1970s as a “language for com-
municating ideas” [10]. According to SADT, the
world consists of activities and data, which are both
represented by boxes and arrows. Each activity con-
sumes some data, represented through input arrows
entering from the left, and produces some data, rep-
resented through output arrows exiting from the
right. In addition, each activity has associated data
that controls its execution, but is neither consumed
nor produced, and some external agent (hardware or
human) that executes it. Analogous diagrams can be
used to model data in a dual fashion. Other struc-
tured analysis techniques, such as the popular data
flow diagrams, adopted ideas from SADT but
focused more specifically on the modeling of infor-
mation flows within an organization, instead of
SADT’s all-inclusive modeling framework. A thor-
ough review of the history and features of conceptual
models can be found in [9].

Requirements engineering was born in the mid-
1970s, partly thanks to Ross and his SADT pro-
posal, and partly thanks to others who established
through empirical study that “the rumored ‘require-
ments problems’ are a reality.” The case for world
modeling during requirements analysis was elo-
quently articulated [6], that software development
methodology starts with a “model of reality with
which [the system] is concerned.” Sol Greenspan’s
RML (Requirements Modeling Language) [5] for-
malizes SADT by using ideas from semantic net-
works and semantic data models. The result is a
requirements modeling language in which entity and

COMMUNICATIONS OF THE ACM January 1999/Vol. 42, No. 1 33

activity classes are organized into
generalization hierarchies, and
which in a number of ways pre-
dates OOA techniques by several
years. More recently, there have
been many proposals for goal-ori-
ented approaches to requirements
engineering, including [7] which
is semiformal and pragmatic, also
KAOS [4], which is more long-
term and heavyweight. KAOS
provides facilities for describing a variety of concepts
such as goals, agents, alternatives, events, actions,
existence modalities and agent responsibilities.
Moreover, KAOS relies heavily on a metamodel to
provide a self-descriptive and extensible modeling
framework. Both RML and KAOS exploit many of
the same modeling constructs used by OOA nota-
tions, though neither was conceived within the
OOA community. However, unlike OOA tech-
niques, RML and KAOS are formal requirements
modeling languages. Their formal semantics consti-
tute a solid foundation for building sophisticated
analysis tools.

This is a very sketchy account of a very active
research area. For more details readers are directed to
the proceedings of the IEEE International Symposia
and Conferences on Requirements Engineering
launched in 1993, also to the journal Requirements
Engineering published by Springer-Verlag since 1996.
An early and influential collection of papers on the
topic of conceptual modeling can be found in [1].

Satisficing Softgoals
Imagine that you have been asked by your client to
conduct a requirements analysis for a new system3

intended to support various office functions within
its organization, including scheduling meetings.
Right from the start, the client is very clear that any
new system should be highly usable, flexible and
adaptable to the work patterns of individual users
and that its introduction should create as little dis-
ruption as possible. You understand that your task
calls for modeling the objects and activities in the
operational environment of the new system, includ-
ing people, office procedures, information items
being created or used and the like. You also know
that other stakeholders in the project need to be
consulted, such as the office staff for whom the new

34 January 1999/Vol. 42, No. 1 COMMUNICATIONS OF THE ACM

✓✓

✓ ✓

✓

Usability

Security

Performance

Profitability

Maintainability

Performance

✓ ✓ ✓

Flexibility

Flexible Work
Patterns

Sharing of
information

Access of
databases

Access other
staff's files

Task
Switching

Separate
Performance
Standards Design for

Extra
Terminals

Future Growth

Design for
Modularity

+

–

+ –

––

+

–

–

Security

✓

✓

AND (G,{G1,G2,…,Gn})

OR (G,{G1,G2,…,Gn})

+(G1,G2)
–(G1,G2)

-- goal G is satisficed when all of G1,G2,…,Gn are
 satisficed and there is no negative evidence against it;
-- goal G is unsatisficed and there is one of G1,G2,…,Gn is
 unsatisficed and there is no positive evidence for it.
-- goal G is satisficed when one of G1,G2,…,Gn is
 satisficed and there is no negative evidence against it;
-- goal G is unsatisficeable if all of G1,G2,…,Gn are
 unsatisfieceable and there is no positive evidence for it.
-- goal G1 contributes positively to the satisficing of goal G2.
-- goal G1 contributes negatively to the satisficing of goal G2.

Table 1. Softgoal relationships

3That is the hardware and software (to be built) that will support meeting
scheduling.

Figure 2. The (partial) result of nonfunctional requirements analysis for an office support system. (This figure was adopted
from coursework by L. Gibbons and J. Spiess, prepared for a graduate-level course taught by Eric Yu.)

system is intended. But how are you going to deal
with the client’s objectives of having a usable and
flexible system? You realize that these objectives are
all-important, but unfortunately get little guidance
from your favorite OOA technique on what to
model and how to include these objectives in your
analysis.

To bring flexibility and usability into the require-
ments analysis process, we first need some way to
represent them, along with their respective interrela-
tionships. For purposes of illustration, we adopt the
Non-Functional Requirements (NFR) framework,
which centers around the notion of softgoal [8].

The concept of goal is used extensively in AI
where a goal is satisfied absolutely when its subgoals
are satisfied, and that satisfaction can be automati-
cally established by an algorithm. To support the rel-
ative, ill-defined, tentative and
contradictory nature of non-func-
tional requirements, however, we
need a looser notion of goal. Soft-
goals are goals that do not have a
clear-cut criterion for their satisfac-
tion. We will say that softgoals are
satisficed 4 when there is sufficient
positive and little negative evidence
for this claim, and that they are
unsatisficeable when there is sufficient
negative evidence and little positive
support for their satisficeability.
Sometimes the evidence is suffi-
ciently strong for the decision for
softgoal satisficeability to be made
automatically without human inter-
vention. In other cases, when there is
weak or conflicting evidence, the
decision may have to be made interactively by the
stakeholders in the requirements analysis process.

In analyzing non-functional requirements, one
does not analyze softgoals independently of one
another, but rather in relation to each other. Two
obvious types of relationships are the AND and OR
goal relationships comparable to the ones tradition-
ally used in AI planning. There can also be other,
looser relationships in which one softgoal subsumes,
prevents, or contributes to the fulfillment of another.
For this discussion, we will only use the four rela-
tionships shown in Table 1. With these preliminar-
ies, we are ready to describe one of the constituents
of goal-oriented requirements analysis.

Non-functional requirements analysis. This

form of analysis begins with softgoals that represent
non-functional requirements agreed upon by the
stakeholders, say Usability, Flexibility, etc.
Then one refines these by using decomposition
methods. These methods may be generic, derived
from general expertise about flexibility, security, and
the like. They may also be domain-specific (specific
to meeting scheduling), or even project-specific
(decided upon jointly by the stakeholders of a proj-
ect). Let’s consider Flexibility (of the new sys-
tem) for illustration purposes. This softgoal might
be decomposed to two other softgoals: the first,
FlexibleWorkPatterns[staff], calls for flex-
ibility in the work patterns allowed by the new sys-
tem for all staff, while the second, FutureGrowth,
calls for a system architecture that can accommodate
future growth. Along similar lines, the Flexible-

WorkPatterns softgoal is further decomposed to
SharingOfInformation, and TaskSwitching,
among staff. Using such an analysis, the softgoal tree
structure for Flexibility is created, as shown in
Figure 2.

However, Flexibility is not the only non-
functional requirement desired by the client. Goal
trees for usability, performance, security, etc. need to
be likewise elaborated. As one refines these, there is
bound to be interference among softgoals belonging
to different softgoal tree structures. Accordingly,
another phase of the non-functional requirements
analysis involves finding lateral relationships
between the softgoals of individual softgoal trees.
For instance, performance goals generally interfere
with flexibility ones. Moreover, allowing general

COMMUNICATIONS OF THE ACM January 1999/Vol. 42, No. 1 35

Effort
[Scheduling]

Effort
[calendareing]

Effort
[matching]

Obtaining
[participant,schd]

Obtained
ByPhone

ObtainedByEMail
Updated

[calendar]

AutomaticObtained
 [participant,

sched]

Collected
[sched]

ManualMatch
[participants,time]

AutomaticMatch
[participants,time]

ScheduledMeeting
[participant]

FoundMatch
[participants,

time]

Fitness
[time,

preferences]

Quality
[time]

DegOfCommitment
[participants,time]

ManuallyObtained
[participant,
sched] ✔

✔

✔

+

+
+ +

–

–
– –

Figure 3. Functional requirements analysis for the office
support system

4See H.A. Simon’s The Sciences of the Artificial, 2d edition, published by
MIT Press (1981).

access to databases interferes with security goals at
some level. Everyone in turn realizes that security
softgoals generally interfere with flexible work pat-
terns. The end result of this analysis is that lateral
relationships are created among the softgoals of dif-
ferent softgoal trees, marking positive as well as neg-
ative interferences. The collection of softgoal trees
has now been turned into a softgoal graph structure,
with possible cyclic paths.

The final step of this analysis is to pick particular
leaf nodes of each softgoal tree structure so that all
root softgoals are satisficed. For instance, in Figure
2, checked leaf softgoals are all picked to be accom-
modated by the new system. Without interferences,
the algorithm for determining whether the root of
an AND/OR goal tree has been satisficed, given that
some of its leaf nodes are, is straightforward. With
interferences, and the presence of multiple types of

relationships representing different forms of positive
or negative interference, the algorithm for determin-
ing the label of each root node uses a form of label
propagation, adopted from qualitative reasoning
techniques in AI [8]. The selection of a set of leaf
nodes represents a set of design decisions imposed
on the new system.

Functional requirements analysis. Tradition-
ally, requirements have been classified as functional
or non-functional. Functional requirements are also
goals. For instance, functional requirements for the
office support system might include: “System must
support meeting scheduling,” or “System will gener-
ate reimbursements for travel.”

Such requirements will lead to particular func-
tions for the new system, such as maintaining a data-
base of schedules for all office staff, or finding a
suitable meeting time given the scheduling con-
straints of all participants. In Figure 3, functional
goals are represented as ellipses to distinguish them
from their non-functional, cloud-like cousins.
Given an initial set of functional goals, one would
look for ways to satisfy them through a process to be
carried out by the new system and/or workers within
the office and/or other, existing systems.

The goal tree structure in the lower half of the fig-

ure shows a possible refinement of the Scheduled-
Meeting goal. The goal has been refined to two
(AND) subgoals, Obtained[schedule] and
FoundMatch. These are further refined, depending
on whether these tasks are to be done manually or
by the new system. But how are we to choose among
alternative designs for the office procedure that han-
dles meeting schedulings? Once again, qualities play
a role in the selection process, as shown with the two
quality softgoal trees of the upper end of the figure,
and the positive and negative influences from differ-
ent design alternatives. Once we have settled on a
particular set of leaf goals, as shown in Figure 3 with
the check-marked functional goals, we have defined
tasks to be carried out by the new system, and pos-
sibly by office workers as well. This figure also shows
that the internal structure of the softgoals can be fur-
ther analyzed, for example, by separating a quality

sort (Flexibility) from the object it is applied to
(System), and from other attributes. This allows
relevant knowledge to be brought to bear on the
analysis process: from very generic (“To achieve
quality X for a system, try to achieve X for all its
components”) to very specific (“To achieve effective-
ness of a software review meeting, all stakeholders
must be present”). Knowledge structuring mecha-
nisms such as classification, generalization, or aggre-
gation, for example, can be used to organize the
available know-how for supporting such a goal-ori-
ented analysis process. A more detailed example on
the use of softgoals in facilitating software evolution
can be found in [2].

Conflict analysis. As indicated previously, soft-
goals are bound to conflict with each other. For
instance, the softgoals of Figure 2 labeled Access-
AllDatabases and AccessOtherStaffsFiles
contribute to satisficing Flexibility, but inter-
fere with security goals. A conflict can also involve
functional goals: making timetables publicly avail-
able, for example, to facilitate the scheduling of
meetings could interfere with security and/or pri-
vacy softgoals. We are only beginning to understand
the importance and depth of the conflict analysis
problem.

36 January 1999/Vol. 42, No. 1 COMMUNICATIONS OF THE ACM

{ }Goal-oriented analysis focuses on the description

and evaluation of alternatives and their

relationship to the organizational objectives.

Goal-oriented analysis amounts to an intertwined
execution of the three types of analysis sketched
here, namely analyses of non-functional require-
ments as softgoals, of functional requirements as
goals, and conflict analysis. The analysis can be
declared complete when all relevant goals (soft or
otherwise) have been operationalized in terms of
constraints on, and functions to be performed by,
the new system.

Conclusion
We have placed OOA techniques within the context
of other notations and methods intended to model
aspects of the real world. On that basis, we have
argued that adoption of an alternative set of primi-
tive modeling concepts, such as those of softgoal and
goal, can lead to a rather different kind of analysis
than those advocated by OOA techniques. More-
over, this kind of analysis is very important because
it deals with non-functional requirements and relates
them to functional ones. As readers may have already
concluded, goal-oriented analysis focuses on the
description and evaluation of alternatives and their
relationship to the organizational objectives behind a
software development project. As many within the
requirements engineering research community have
argued, capturing these interdependencies between
organizational objectives and the detailed software
requirements can facilitate the tracing of the origins
of requirements, and can help make the require-
ments process more thorough, complete, and consis-
tent. Preliminary empirical studies suggest that
goal-oriented analysis can indeed lead to a more
complete requirements definition than OOA tech-
niques can. Moreover, our own experiences in ana-
lyzing the requirements and architectural design for
a large (telecommunications) software system con-
firm that goal-oriented analysis can greatly facilitate
and rationalize early phases of the software design
process.

Of course, OOA techniques still have a place
within a requirements analysis process even if one
adopts goal-oriented analysis. After all, OOA models
define the objects and activities mentioned in the
detailed requirements for the new system. So goal-
oriented analysis and OOA should be seen as com-
plementary, the former focusing on the early stages
of requirements analysis and on the rationalization
of the development process, the latter on late stages
of requirements analysis. The KAOS methodology
gives an excellent sample of how the two types of
analysis coexist and complement each other.

Traditionally, requirements analysis practice has
been driven by the programming paradigm of the

day. Thus, in the days of structured programming,
structured analysis ruled, whereas today interest is
shifting to OOA. Given the importance of require-
ments analysis to the success of any large software
development project, perhaps it is time to turn
things around: suppose we let the concepts and tech-
niques of goal-oriented analysis drive the design and
implementation techniques that follow. What would
such a software development methodology look like?
Perhaps it will be based on software architectures
that share some of the characteristics of human orga-
nizations and be grounded in the concepts of agent,
goal, and of course softgoal. Actually, agent pro-
gramming is gaining in popularity as the program-
ming paradigm for network computing, so the
possibility of a new development methodology
grounded on goal-oriented analysis and agent-based
design and implementation may not be as far-
fetched as it might seem.

References
1. Brodie, M., Mylopoulos, J., and Schmidt, J., Eds. On Conceptual Mod-

elling: Perspectives from Artificial Intelligence, Databases and Program-
ming Languages. Springer Verlag, 1984.

2. Chung, L., Nixon, B., Yu, E. Dealing with change: An approach using
non-functional requirements. Requirements Engineering 1, 4 (1996),
238–260.

3. Coad, P. and Yourdon, E. Object-Oriented Analysis. Yourdon Press,
Englewood Cliffs, NJ, 1990.

4. Dardenne, A., van Lamsweerde, A., and Fickas, S. Goal-directed
requirements acquisition. Science of Computer Programming 20 (1993),
3–50.

5. Greenspan, S., Borgida, A., and Mylopoulos, J. A requirements model-
ling language and its logic. Information Systems 11, 1 (1986), 9–23.

6. Jackson, M.A. System Development. Prentice Hall, London, 1983.
7. Kaindl, H. A practical approach to combining requirements definition

and object-oriented analysis. Annals of Software Engineering 3 (1997),
319–343.

8. Mylopoulos, J., Chung, L. and Nixon, B. Representing and using non-
functional requirements: A process-oriented approach. IEEE Trans.
Softw. Eng. (June 1992).

9. Mylopoulos, J. Information modeling in the time of the revolution.
Info. Syst. 23, 3–4 (June 1998), 127–156.

10. Ross, D. Structured analysis: A language for communicating ideas.
IEEE Trans. Softw. Eng. 3, 1 (Jan. 1977).

11. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W.
Object-Oriented Modeling and Design. Prentice Hall, 1991.

12. Shlaer, S. and Mellor, S. Object-Oriented Systems Analysis: Modeling the
World in Data. Prentice Hall, 1988.

John Mylopoulos (jm@cs.toronto.edu) is professor of computer
science at the University of Toronto.
Lawrence Chung (chung@utdallas.edu) is an assistant professor
in the department of computer science at the University of Texas at
Dallas.
Eric Yu (yu@fis.utoronto.ca) is an assistant professor in the Faculty
of Information Studies at the University of Toronto.

Permission to make digital or hard copies of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

© 1999 ACM 0002-0782/99/0100 $5.00

c

COMMUNICATIONS OF THE ACM January 1999/Vol. 42, No. 1 37

