
The state of object-oriented design oriented design method that focuses
is evolving rapidly. This survey de- on object responsibilities and col-
scribes what are currently thought to laborations. The method includes
be the key ideas. Although it is nec- graphical tools for improving encap-
essarily incomplete, it contains both sulation and understanding patterns
academic and industrial efforts and of ob.ject communication. Trygve
describes work in both the United Reenskaug at the Senter for Industri-
States and Europe. It ignores well- forskning in Oslo, Norway has been
known ideas, like that of Coad [6] developing an object-oriented design

tern, which generates language-
specific class definitions from
language-independent class dic-
tionaries. The Demeter system in-
cludes tools for checking design rules
and for implementing a design.

Common Terminology
Hewlett-Packard is involved in many

and Meyer [34], in favor of less
widely known projects.

Research in object-oriented design
can be divided many ways. Some re-
search is focused on describing a
design process. Some is focused on
finding rules for good designs. A
third approach is to build tools to
support design. Most of the research
described in this article does all three.

We first present work from Alan
Snyder at Hewlett-Packard on devel-
oping a common framework for
object-oriented terminology. The
goal of this effo:rt is to develop and
communicate a corporate-wide com-
mon language for specifying and
communicating about objects.

We next look into another research
activity at Hewlett-Packard, led by
Dennis de Champeaux. De Champ-
eaux is developing a model for
object-based analysis. His current
research focuses on the use of a
trigger-based model for inter-object
communicationa and development of
a top-down approach to analysis us-
ing ensembles.

We then survey two research activ-
ities that prescribe the design process.
Rebecca Wirfs-Elrock from Tektronix
has been developing an object-

method that focuses on roles, syn-
thesis, and structuring. The method,
called Object-Oriented Role Analy-
sis, Syntheses and Structuring, is
based on first modeling small sub-
problems, and then combining small
models into larger ones in a con-
trolled manner using both inheri-
tance (synthesis) and run-time
binding (structuring).

We then present investigations by
Ralph Johnson at the University of
Illinois at Urbana-Champaign into
object-oriented frameworks and the
reuse of large-scale designs. A
framework is a high-level design or

.
application architecture and consists
of a suite of classes that are specifi-
cally designed to be refined and used
as a group. Past work has focused on
describing frameworks and how they
are developed. Current work in-
cludes the design of tools to make it
easier to design frameworks.

Finally, we present some results
from the research group in object-
oriented software engineering at
Northeastern University, led by Karl
Lieberherr. They have been working
on object-oriented Computer As-
sisted Software Engineering (CASE)
technology, called the Demeter sys-

activities that involve object-oriented
technology. In addition to object-
oriented programming [4, 15, 521,
these activities include object-
oriented databases [13], user inter-
faces [18], application architectures
[19], application integration plat-
forms [39], distributed systems [2],
and network management architec-
tures [20]. Each area has an asso-
ciated external technical community,
and many have associated standards
activities. These areas differ in both
the forms in which object-oriented
concepts appear and the terms used
to refer to the concepts. This diver-
sity has caused serious communica-
tion problems and has hampered the
convergence of these technologies to
provide comprehensive and consis-
tent object-based solutions.

To address this issue, represen-
tatives from the various technologies
were brought together to exchange
information and develop a shared
understanding. The first step in
developing the glossary of common
terminology was to identify and de-
fine a set of core concepts that could
be used to characterize and contrast
the various object-oriented technol-
ogies familiar to the task force mem-

104 September 199OiVd.33, No.9/COIIYUWICATIOWSOFTBE~~ICM

CURRENT
RESEARCH

IN
OBJECT-

ORIENTED

COYY"W,CIT,OWIOFT"EICY/S~~~~~~~~ 199OlVo1.33. No.9

I I I I I I I I I I I

bers. These concepts were defined in
a general way to apply to the wide
variety of technologies under con-
sideration. Each core concept that
was identified had a term selected for
it. The result was the abstraction of
the essential common core concepts
of object-oriented -technology, and a
common terminology This common
terminology has been endorsed by
the management of the computer
business within Hewlett-Packard and
is being promoted within corporate
training programs.

The essential concepts are sum-
marized as follows:

l An ob@ci embodies an abstraction.
It provides services to its clients. This
principle emphasizes that an object
is not just a collection of data. It ex-
plicitly embodies an abstraction
that is meaningful to its clients,
which may be programs or users.
The services are computations that
are appropriate to the abstraction.

l Clients request services from objects.
Clients respect the abstractions
embodied in an object. Objects are
encapsulated: clients are prevented
from making direct access to the
data associated with an object. In-
stead, clients issue requests for
services that are performed by ob-
jects. Performing a request involves
executing some code, a method, on
the associated data. A request iden-
tifies the requested service (the
operation), as well as the objects that
are to perform the service. These
objects can be identified unam-
biguously and reliably (this is
called object refmence). Requests may
include other parameters, and may
return results. The set of services
that an object provides may be de-
scribed in the form of an interface
description.

l Requests can be ,peneric. A client can
issue the same request to different
kinds ofobjects that provide similar
services. Specifically, performing a
request may involve the execution
of different code depending upon
the objects ident:ified in the request.

l Objects can be c:lassified in terms of
the services they provide. This clas-

sification may be based on explicit
interface descriptions. An object
could provide a subset of the ser-
vices provided by another object,
leading to hierarchical classifiation

and an interface hierarchy.
l Objects can share implementa-

tions. Mechanisms are generally
provided that allow multiple ob-
jects, called instances, to share the
same implementation (often called
a clacss). Also, mechanisms are often
provided by which the implemen-
tation of one object cannot just
share the implementation of an-
other object, but can also extend or
refine it (implementation inheritance
or delegation) [48].

There are several commonly used
terms that have been frequent
sources of confusion and miscom-
munication within Hewlett-Packard.
The term that causes the most con-
fusion is encapsulation. Encapsulation
has three possible meanings: the en-
forcement of abstraction barriers; the
act of integrating foreign compo-
nents into a system; and the mecha-
nism for controlling access to services
by different users. (The recom-
mended terms identified by the task
force for these three concepts are en-
capsulation, embedding and protection.)
Another confusing term is inheritance.
Inheritance has two primary mean-
ings: a mechanism by which object
implementations can be organized to
share descriptions; and a classifica-
tion of objects based on common
behavior or common external inter-
faces. (The recommended terms for
these concepts are implementation in-

heritance and interfuce hierarchy.) Other
confusing terms are type and class,
whose multiple meanings refer to
either the external interfaces of ob-
jects or the implementations of
objects.

Snyder has found that the distinc-
tions between multiple meanings can
be subtle, even to people who are
familiar with basic concepts. The
results of the common object ter-
minology effort are available in two
technical reports [49, 511. In addition
to providing a definition for each
concept, the reports identify syno-

nyms, give examples, state the im-
portance of the concept, and present
the rationale for the choosing the
recommended term.

Rather than develop a compre-
hensive terminology the most impor-
tant concepts and those with multiple
meanings or ambiguous terms were
identified and defined. The terms
were selected to be broadly ap-
plicable to multiple domains, and
were not restricted to programming
terminology. This led researchers at
Hewlett-Packard to adopt, in some
cases, terminology that is different
from the more commonly used
object-oriented programming termi-
nology. Adoption of the terminology
has been the result of personal ini-
tiative and leadership by members of
the original task force. For example,
the terminology has been adopted in
the architectural documents for
Hewlett-Packard’s NewWave Com-
puting Architecture, the company’s
strategic initiative for its computer
business.

We present the entry from the HP
technical report for the term generic re-
quest to illustrate the complete
descriptions that were developed.

Generic Request
Definition:

A request is a statement that
specifies a service to be carried out by
objects. A request has a name, iden-
tifies the objects that are to provide
the service (the providers), and may
take arguments and produce results.
Ageneric request is a request that may
be issued to different objects that pro-
vide (similar) services with different
implementations and possibly dif-
ferent behaviors. The request itself
does not determine how the services
will be performed. When a request is
issued, a selection process determines
the actual code to be executed to per-
form the service. More than one ob-
ject can participate in providing a
service in response to a request.

Example:
A print request can be made to

any printable object (e.g., a docu-
ment or spreadsheet). The request
may also specify a device object
where the document will be printed.

106

I I I I I I I

Importance:
Generic requests are a major fac-

tor in the reusability of object-
oriented programs. Code written in
terms of generic requests can be used
for different purposes when the
requests are sent to objects that inter-
pret them differently. In object-
oriented user interfaces, generic re-
quests allow multiple applications to
share a common interaction style,
improving ease of use.

Synonyms and Related Terms:
In the Iris database, issuing a ge-

neric request is calledfunction invoca-
tion. In C + + it is called virtual member

function invocation. In general, a re-
quest may designate multiple objects
to provide the service. A message is a
generic request for a service issued to
a single object; issuing such a request
is called message sending. The ability
to support generic requests is also
called polymorphism and function

overloading.

Rationale:
The use of the word generic high-

lights the feature that a single request
may denote a range of related ser-
vices. We de-emphasize the tradi-
tional term message for two reasons:
One is the common misconception
that message sending implies concur-
rent execution by the sender and the
receiver. The other is the implication
that a message is sent to a single loca-
tion at which it is handled. Although
in traditional object-oriented sys-
tems, services are provided by indi-
vidual objects, systems like the Iris
database and the Common Lisp Ob-
ject System (CLOS) have begun to
explore more general models in
which the implementation of a single
service is provided jointly by multi-
ple objects. While the integration of
this concept with the traditional
object-oriented model is not yet clear,
it is clear that the more general model
is needed to handle certain real prob-
lems. A classic example is the prob-
lem of printing a document on a
printer, the implementation of which
may differ based on both the kind of
document and the kind of printer.

Common terminology within a sin-

gle organization is only an inter-
mediate solution. The ultimate goal
is consensus within the technical
community at large. As a step in this
direction, Hewlett-Packard is par-
ticipating in the Object Management
Group (OMG), an industry consor-
tium chartered to promote the wide-
spread adoption of object technology.
The OMG is actively working to in-
fluence the future directions of
object-oriented technology, specili-
tally through the adoption of a plat-
form-independent object-oriented
applications environment. The work
described above has been incor-
porated and extended by the OMG
technical committee in creating a
“standards manual” to guide the for-
mulation of and responses to requests
for technolo,gy.

An “abstract object model” [50]
has been defined which provides an
organized and more detailed presen-
tation of concepts and terminology.
This abstract object model also par-
tially defines a model of compu-
tation. The partial nature of this
description is in keeping with the
OMG’s policy of adopting existing
technologies rather than designing
new ones. Any existing technology
submitted to the OMG will likely
define its own concrete object model
based upon this abstract object
model. The abstract object model
provides a framework for such con-
crete object models. A concrete ob-
ject model would elaborate upon the
abstract object model by making it
more specific, for example, by delin-
ing the form of a request, and would
populate the abstract object model by
introducing specific instances of ob-
ject model entities, such as specific
operations.

To illustrate the evolution of ter-
minology, here is the definition for
request from the abstract object
model:

Clients request services by issuing
requests. A request is an event (i.e.,
something that occurs at a par-
ticular time during the execution
of the computational system). The
information associated with a re-
quest consists of an operation and
zero or more (actual) parameters.

Operations are (potentially)
generic, meaning that a single
operation can be requested of ob-
jects with different implementa-
tions, resulting in observably
different behavior. Operations are
created by explicit action; each
such action creates an operation
that is distinct from operations
created previously or in the future.
A value is anything that is a possi-
ble (actual) parameter in a re-
quest. A value may identify an
object, for the purpose of perform-
ing the request. A value that iden-
tifies an object is called an object
name. A handle is an object name
that unambiguously identifies a
particular object. Within certain
pragmatic limits of space and
time, a handle will reliably identify
the same object each time the han-
dle is used in a request. A request
causes a service to be performed
on behalf of the client. One out-
come of performing a service may
be that some results are returned
to the client. The results associated
with a request may include values
as well as status information in-
dicating that exceptional condi-
tions were raised in attempting to
perform the requested service.

There is a subtle change in this
new description from the original. In
the earlier definition the request was
called generic. In the newer terminol-
ogy, it is the operation that is called
generic. This change resulted from
making the definition of request
more formal. Several possible mean-
ings were considered: the form issued
by the user (for example, an invoca-
tion form in a program text), the in-
formation provided (the operation
and the actual arguments), or the
computational event itself.

The last option was chosen both
for its utility, since the results are
associated with the event, and ease of
formalization, since the syntactic
form cannot easily be formalized in
an abstract form. The original delini-
tion of generic request assumed the
first meaning. With the new mean-
ing, it no longer made sense: the
same request (event) cannot be is-

107

I I I

sued to different objects. Therefore,
the concept of generic was associated
with operation.

Efforts are continuing within
Hewlett-Packard and elsewhere to
further refine these concepts and the
abstract object model and to work
toward consensus within the tech-
nical community,

Object-Orlenteu AnmlySlS

Another research <activity at Hewlett-
Packard addresses the object-ori-
ented paradigm for analysis. The
goal of this research is to develop an
analysis method that can be inte-
grated with object-oriented design. A
primary objective of this research is
to develop a method that does not
assume sequential computation. [9].

The analysis method should allow
for what de Champeaux terms unlim-
itedformalization. The method should
not impose formalization on the ana-
lyst. However, if validation of the im-
plementation is required, it should be
verifiable against the results of
analysis.

The object-oriented paradigm
classically has its roots in sequential
programming languages. Object in-
teraction in such a context is too
simplistic: the sender passes an
operation name and arguments to
the receiver. Control is initially
passed to the receiver. The receiver
next executes the desired operation
and sends the result back to the
sender. Finally, control is returned to
the sender. This model of control and
information flow is not rich enough
to describe all the causal connections
between objects an analyst needs to
model.

Shlaer and Mellor have developed
an object-oriented process model that
relies on data flow diagrams from
Structured Analysis to describe the
actions in their state models [47]. In
their model, interaction between ob-
jects is described indirectly via the oc-
currence of an external data store in
a data flow diagram.

De Champeaux is exploring
whether triggers provide a more
direct mechanism for modeling
causal interactions between objects.
A trigger does not carry data, the in-

I I I

itiator is not suspended, and it does
not expect a return value. The only
effect of a trigger is to initiate a state
change by the recipient.

Another subtlety that must be
modeled is how to deal with a trigger
that cannot be handled by the recip-
ient, perhaps because an additional
condition for a triggered transition is
not satisfied. Should the trigger be
lost, buffered, or signal an error con-
dition? Each of these responses is
appropriate under certain circum-
stances. This suggests that a richer
interobject interaction model than a
trigger is necessa.ry.

This has led to consideration of
additional object interaction forms,
such as:

trigger-and-wait-for-acknowledge-
ment (where the initiator waits for
acknowledgement of receipt of the
trigger),

send-no-wait (where data and the trig-
ger are simultaneously transmitted),

send-and-wait-to-acknowledge-of-
reception (where the initiator triggers
a transition, while transmitting a
value that will be consumed by an ac-
tion on the transition; the sender
blocks until it receives acknowledge-
ment that the trigger and value have
arrived), or

send-and-wait-for-reply (similar to
the above example except for the
sender is blocked until a value is
returned).

Determining an appropriate set of
additional forms to describe inter-
object interactions is a current re-
search topic.

Ensembles
An analyst using traditional struc-
tured analysis techniques obtains a
top-down view of a system. Process
decomposition is a well-known tech-
nique. Similar mechanisms are
needed for objects.

For example, in analyzing a bank-
ing application, an interest rate, a
branch office, a teller machine, a cor-
porate account, a loan officer, or a
monthly statement are all candidate
objects to model during analysis.
However, they obviously represent

I I I I

different layers in the problem
domain.

De Champeaux is investigating an
appropriate abstraction layering and
decomposition technique for select-
ing objects during analysis that
facilitates such a layered analysis.
Currently he is exploring ensembles
as a technique for creating and ana-
lyzing objects in an ordered fashion.

Ensembles represent a cluster or
bundle of less abstract entities which
are either objects or lower-level ob-
jects. Ensembles, like objects, can be
modeled by attributes and optionally
a state-transition machine, can inter-
act with other objects or ensembles,
and have an interface model. A ma-
jor distinction between ensembles
and objects is that an ensemble ha:
internal parallelism, while an object
is a finite state machine.

The main purpose of an ensemble
is to hide details of a set of objects or
subensembles that are irrelevant out-
side the ensemble. Like classes of ob-
jects, classes of ensembles can be
modeled. An important part of an
ensemble’s information model is a
description of its constituent objects
and subensembles. Additional en-
semble attributes may model features
that apply to an ensemble’s constit-
uents as a whole. For example, con-
sider a fleet of ships represented as an
ensemble. The individual ships share
the direction in which they are going.
Thus, we can model direction as an
attribute of a fleet. Summary infor-
mation may also be modeled such as
the number of ships in the fleet.

When an ensemble has noncon-
stituent attributes, it is often appro-
priate to develop a state-transition
model for it. Inter-ensemble or object
interactions can then be described. A
major difference between an object
and an ensemble is that ensembles
have a forwarding mechanism for
triggers and messages that mediates
between external entities and ensem-
ble constituents. From outside an
ensemble, it may appear as if mes-
sages to an ensemble directly cause
ensemble constituents to change
state. For example, the return-to-port
transition causes the direction of all
ships in the fleet to change. When we

108

I I I I I I I

look inside the fleet ensemble, we see
a different triggering and messaging
pattern that actually achieves these
consequences. Introducing ensem-
bles thus allows low-level mecha-
nisms to be hidden from higher-order
functionality.

Researck In Responsibil-
Ity Driven Design
Over a period of six years, Tektronix
developed one of the largest and most
experienced groups of Smalltalk pro-
grammers and produced several
major commercial and internal ap-
plications [12,35,57]. Much experi-
ence was gained in the process. In the
last few years a number of individ-
uals have focused on developing and
teaching a method for designing
object-oriented applications [59].
Past experience in Smallmlk develop-
ment led to a strong sense of what
constitutes good design. The result is
a design process that has been ap-
plied to a number of small and
medium-sized engineering endeav-
ors at Tektronix and elsewhere [60].

In developing a method for object-
oriented design the following goals
were set:

1. Develop a model that encourages
exploration of alternatives early in
the design process, and that pro-
vides a structure for analyzing and
improving initial design decisions.

2. Develop simple tools that help a
design team to reason about a
design. It should be easy to record
and modify design decisions.

3. Develop language-independent
methods and guidelines.

ResDmmslDlllty Driven
Deslgn

Responsibility-driven design models
an application as a collection of ob-
jects that collaborate to discharge
their responsibilities. Responsibilities
are a way to apportion work among
objects that comprise the application.
This approach stresses focusing on
what actions must be accomplished
and which objects will accomplish
them. How each action is accom-
plished is deferred until after a model
of objects and the interactions is
created and understood.

Responsibilities include two key
items:

l the knowledge an object maintains,
and

l the actions an object can perform.

Responsibilities are meant to convey
a sense of the purpose of an object
and its place in an application. Re-
sponsibilities represent the publicly
available services defined by objects.
Note that responsibilities have been
defined for objects, not classes,
though the responsibility of a class
can be defined as the responsibilities
of its instances.

Focusing on the responsibilities of
objects maximizes information hid-
ing and encapsulation. Information-
hiding distinguishes the ability to
perform some act from the specific
steps taken to do so. An object reveals
its abilities publicly, but it does not
tell how it knows or does them. An
object may need to know and do
other things in order to fulfill its pub-
lic responsibilities, but those things
are considered private to the object.

The responsibilities of an object
are all the services it provides for all
objects that communicate with it.
Objects fulfill their responsibilities in
one of two ways: by performing the
necessary computation themselves,
or by collaborating with other
objects.

Exploration
The process of design can be parti-
tioned into two distinct phases, as
shown in Figure 1. To start, object-
oriented design is exploratory. The
designer looks for classes of objects,
trying out a variety of schemes in
order to discover the most natural
and reasonable way to abstract the
system. During the initial ex-
ploratory phase of design the primary
concern is to build a model of the key
classes that will fulfill the overall
design objectives. In this phase the
major tasks are to

l discover the classes required to
model the application,

l determine what behavior the sys-
tem is responsible for, and assign

Requlrementq Specification

t
Preliminary Design

t
Design

FIGURE w. Phases of design: exploration and analysis.

COYWUYICATIONSOCTNE ACM/September 199O/Vol.33, No.9 109

I

these responsibilities to specific
classes, and

l determine what collaborations
must occur between classes of ob-
jects to fulfdl those responsibilities.

Modeling is the process by which
the logical objects in a problem space
are mapped to the actual objects in a
program. These steps produce a set
of candidate classes for an applica-
tion, a description of the knowledge
and operations for which each class
is responsible, and a description of
collaborations between classes (i.e.,
between instances of those classes).

ReCOrUlng The mltlal Desrsrn

Beck and Cunningham [3] have
found that index cards are a simple
tool for teaching object-oriented con-
cepts to designers. The responsibil-
ity-driven design method uses index
cards to capture initial classes,
responsibilities and collaborations.
They also record subclass-superclass
relationships and common respon-
sibilities defined by superclasses.

Index cards work well because
they are compact, easy to manipu-
late, and easy to modify or discard.
Index cards can be easily arranged
on a tabletop and a reasonable num-
ber of them viewed at the same time.
They can be picked up, reorganized,
and laid out in a new arrangement to
amplify a fresh insight.

Each candidate class is written on
an index card, as shown in Figure 2.
Each identified responsibility is suc-
cinctly written on the left side of the
card. If collaborations are required to
fulfill a responsibility, the name of
each class that provides necessary

I I I

services is recorded to the right of the
responsibility. Services defined by a
class of objects include those listed on
its index card, plus the responsibili-
ties inherited from its superclasses.

ImDrovlnm the tnltlal DesIan

Once an initial model has been con-
structed, it is crucial to turn a critic’s
eye on the design.

Without such attention, it is dif-
ficult to obtain the reusability and
refinability benefits touted by object-
oriented technology. It is particularly
important to construct properly
structured hierarchies, to identify
abstract classes, and to simplify inter-
object communications. During this
second, highly analytical phase of
design the primary activities are to

l factor the responsibilities into
hierarchies to get maximum reus-
ability from class designs,

l model the collaborations between
objects in more detail to better en-
capsulate subsystems of objects,
and

l determine the protocols and com-
plete a specification of classes, sub-
systems of classes, and client-server
contracts.
Paying careful attention to struc-

turing abstract and concrete classes,
first, before improving object col-
laborations, reduces rework required
during later stages.

Factorlnm HlerarClMeS

A design is most extensible when a
class inherits from another class only
if it supports all of the responsibilities
defined by that other class. Inheri-
tance should model “is-kind-of’ rela-

Class: Drawing

Know which elements it contains ,_,._.,.ii,.,.,.,.,.,.,..,,.,.,.,.,.,.,.........,.,.,.,.,...~.~.~.....,.,.,.,...,.,.,.,.,.,.,.......,.....,.,.,.........,.......,...........,.,.,.................,...........,.

I

. ,.....i...i..V.........‘.‘,
Maintain ordering between elements Drawing element ,_,.,.,.,,.,,,...__..,.,..,,.,,,.,.............,.,,,,.......... .,.,.,.,..........~.~(,.,.... __..........,..........\............_...................... .,.,.. .i\........A.V.‘..

FIGURE 2. An Index card with CollatIorations

I I I I I

tionships: every class should be a
specific kind of its superclasses [17,
261. Subclasses that support all of the
responsibilities defined by their
superclasses are more reusable be-
cause it is easier to see where a new
class should be placed within an ex-
isting hierarchy. A corollary of this
principle is that if a set of classes all
support a common responsibility,
they should inherit it from a common
superclass.

An important distinction to be
made when designing a class is the
primary purpose of abstract and
concrete classes. Abstract classes
are designed to be inherited. They
exist solely to specify behavior that
is reused by inheritance. Instances
of abstract classes are never created
as the system executes. Concrete
classes are designed to be instan-
tiated. Although it is often useful
to inherit from a concrete class,
concrete classes are usually not de-
signed to be reusable by inheritance,
but as components.

One way to factor responsibilities
higher in a class hierarchy is to design
as many abstract classes as possible.
In general, the more concrete sub-
classes of an abstract class, the more
likely the abstraction is to stand the
tests of time and software enhance-
ments. Only one responsibility is
needed to define an abstract super-
class, but at least two specific sub-
classes of it are required before one
can hope to design a generally useful
abstraction. Defining many abstract
superclasses as possible means that
much common behavior has been
factored into reusable abstractions.

-01s ior UnUerstancllnD
Dl8Ject Interactions

Analyzing an exploratory design re-
quires global understanding. Both
graphical and conceptual tools are
used to gain that understanding.

Contracts

A contract is a set of related responsi-
bilities defined by a class. It describes
the ways in which a given client can
interact with a server. A contract is a
list of requests that a client can make
of a server. Both must fulfill the con-
tract: the client by making only those

I I I I I I I

requests that the contract specifies,
and the server by responding appro-
priately to those requests. The rela-
tionship is shown in Figure 3.

Responsibilities found in the ex-
ploratory phase are the basis for
determining the contracts supported
by a class. Not all responsibilities will
be part of a contract. Some respon-
sibilities represent behavior a class
must have to support the fulfillment
of contracts but which are not di-
rectly exposed to other objects. These
are private responsibilities.

A class can support one or more
distinct contracts. The word “con-
tract” is not just another name for a
responsibility. A responsibility is
something one object does for other
objects, either performing some ac-
tion or responding with some infor-
mation. A contract defines a cohesive
set of responsibilities that a client can
depend on. The cohesion between re-
sponsibilities is a measure of how
closely those responsibilities relate to
one another.

For example, all classes of num-
bers support a contract to perform
arithmetic operations. That contract
includes responsibilities to perform
addition, subtraction, multiplication
and division. For example, let us say
a new class defines the responsibility
for its instances to know how to add
themselves to other instances of the
class. These new objects cannot be
used as servers in places where some
type of number is expected. The new
class defines the addition responsibil-
ity, but it does not support the entire
set of responsibilities defined by the
arithmetic contract.

Often a class supports only a single
contract. However, when a class has
multiple roles or when its services can
be factored into sets that are used by
distinct clients, it will support multi-
ple contracts.

Subsystems 06 Classes

An application is composed of more
than just classes. A complex system
requires many levels of abstraction,
one nested within the other. Classes
are a way of partitioning and struc-
turing an application for reuse. But
a design often has groups of classes

I I I I I I I I I11111111. 03lNCT.03lNNTED DEbION

that collaborate to fulfill a larger
purpose.

A subsystem is a set of such classes
(and possibly other subsystems) col-
laborating to fulfill a common set of
responsibilities. Although subsys-
tems are not directly supported by
existing object-oriented languages,
they are an important way of think-
ing about large object-oriented sys-
tems. One way to test if a group of
classes form a subsystem is to try to
name the group. If the group can be
named, the larger role they cooperate
to fulfill has been named. A sub-
system is not just a bunch of classes,
it should form a good abstraction.

CoGaGora~~ons Graphs

A collaborations graph helps analyze
paths of communications and iden-
tify potential subsystems. It graphi-
cally displays the collaborations
between classes and subsystems. The
graph can be used to identify areas of
unnecessary complexity, duplication,
or places where encapsulation is
violated. Collaborations graphs rep-
resent classes, contracts, and collab-
orations. In addition, collaborations
graphs show superclass-subclass rela-
tionships.

A subclass in a responsibility-
driven design should support all the
contracts defined by its superclass.
Therefore, in a collaborations graph,
a superclass represents the contracts
supported by all of its subclasses.
This idea is represented by graphi-
cally nesting subclasses within the
bounds of their superclasses.

One example of a subsystem,
shown in Figure 4, is the printing
subsystem encapsulating the classes
Print %W?r, Printer, and its
subclasses Dot Matrix Printer and
Laser Printer. Together, these classes
can be viewed as collaborating to
print fdes. Although the Print Server
collaborates with Queue, Queue is
not part ofthe Printing Subsystem,
because instances of the class Queue
are used by classes outside the Print-
ing Subsystem. A class is part of a
subsystem only if it exists solely to
fulfill the goals of that subsystem.

Subsystems simplify a design, A
large application is made less com-

FIGURE 3. The Chit-s0NW COlltKICt

Printing “I
Subsystem

rl Prin:
Server

LJ2

Printer

FIGURE 4. The Printing Subsvstem
Collaborations Graph.
Contracts are indicated by semicircles.
Classes are drawn as rectangles, with
subclasses nested within superclasses. An
arrow is drawn from the client to the sewer
supporting the contract. It is tvplcal for
manv classes in a design to support just one
contract, and, In fact, to inherit it from a
superclass.

plex by identifying subsystems within
it and treating those subsystems as
classes. An application can be de-
composed into subsystems, and those
subsystems can in turn be modeled
until all required richness and detail
have been specified. Ultimately, soft-
ware is composed of classes, but to
ignore the possibility of subsystems
is to ignore one of the most fruit-
ful aspects of the structure of an
application.

Subsystems are only conceptual
entities; they do not exist during ex-
ecution. They therefore cannot di-
rectly fulfill any of their contracts.
Instead, subsystems delegate each
contract to a class within them that
actually supports the contract.

Because clients use the functional-
ity of a subsystem through a clearly
defined set of contracts, subsystem
functionality can be extended with-
out disrupting the rest of the applica-
tion. A new contract can be defined,
or an existing contract can be ex-
tended to provide access to the addi-

COYY”WIWTIO”~OFTMEICYIScptember 199O/Vo1.33, No.9 111

I I I

tional functionality. For example,
we could extend the Printing
Subsystem by adding the ability to
print at a specified time or to print a
specified number of copies. Existing
contracts would adequately deal with
the new functionality; the Printing
Subsystem would still print the con-
tents of a tile (the old contract), but
would do so in different ways (the
new functionality).

GuIdelInes ior SlmpIliylng
#nteractlonr
Subsystems are identified in order to
simplify the patterns of collabora-
tion. Without such simplification,
the communication paths could flow
from nearly any class to any other,
with only the slenderest of justifica-
tions and no coherent structuring.
Such anarchic flow leads to spaghetti
code-the same problem that struc-
tured programming was designed to
avoid. The problem is evident when
one looks at a collaborations graph
for such an application. The graph
itself looks like spaghetti; it cannot be
understood, and the application it
represents is consequently impossible
to maintain or modify sensibly.

Simplifying the patterns of collab-
oration translates into a simplitica-
tion of the collaborations graph.
Places where the graph is complex
are areas that likely need to have col-
laborations simplified. Often collab-
orations graphs are drawn repeatedly
to test simplification alternatives.

Basic guidelines are used to sim-
plify patterns of collaboration for the
following purposes:

l Minimize the number of collabo-
rations a class has with other classes
or subsystems.

l Minimize the number of classes
and subsystems to which a sub-
system delegates. Another way of
stating this principle is that the
classes within a subsystem should
be encapsulated whenever possible.

l Minimize the number of different
contracts supported by a class or a
subsystem.

lmptementlng Abstract
CIasses

Abstract classes are an important

I I I

part of an object-oriented design
because they not only define behav-
ior that is shared by many classes,
they provide a reusable design for
their subclasses. An implementation
of an abstract class will use three
kinds of methods to describe the con-
tract between subclass and super-
class, and between superclass and
subclass. These are termed base
methods, abstract methods and
template methods.

Base methods provide behavior that is
generally useful to subclasses. The
purpose of base methods is to imple-
ment in one place behavior that can
be inherited by subclasses.

Abstract mthodr provide default behav-
ior that subclasses are expected to
override. The behavior does not do
anything particularly useful, and
subclasses are expected to reimple-
ment the entire method. The pur-
pose of abstract methods is to fully
specify the subclasses responsibilities.
Thus, the designer of a subclass
uses the abstract methods as a
specification.

For example, the abstract class
Displayable Object might define
the method display as an abstract
method. The method might, per-
haps, display a black box the size of
the object’s bounding box. In order
for any element to display itself ac-
curately, all subclasses of Display-
able Object must reimplement the
method display to provide accurate,
reasonable display behavior for the
particular kind of Displayable
Object.

72mplate methoa? provide step-by-step
algorithms. Each step can invoke an
abstract method, which the subclass
must define, or a base method. The
purpose of a template method is to
provide an abstract definition of an
algorithm. The subclass must imple-
ment specific behavior to provide the
services required by the algorithm.

For example, the abstract class
Filled Element, a subclass of
Displayable Object, might define
the method display as a template
method with this algorithm:

I I I I I

drawBorder
drawInterior

This alters responsibilities of its
subclasses from the abstract opera-
tion specified in Displayable Object.
Each subclass of Filled Element
must implement the methods draw-
Border and drawlnterior in such a
manner that they provide reasonable
behavior.

An abstract class and its methods
therefore serve as a minimal spec-
ification of each of its subclasses.
An important part of specifying an
abstract class is specifying the be-
havior for each method that is in-
herited by its subclasses. Specifi-
cation of methods for an abstract
class should state whether the
method is an abstract method that
must be overridden, or a base or
template method that should be
directly inherited.

Deilnlng Class Structure

The implementation of a class hier-
archy should push details about a
class’s structure as low as possible in
the hierarchy. Subclasses can over-
ride inherited behavior, but not
structure, so it is better to delay
design decisions about structure as
long as possible.

A responsibility is a statement of
intent. It is general; it says nothing of
how a responsibility is supported-
details of structure or algorithms. If
a superclass supports its respon-
sibilities in the most generic way
possible, there will not be any im-
plementation details to impede a
creation of a new subclass that wishes
to inherit its responsibilities. Each
subclass is free to implement the
responsibilities in a way most ap-
propriate for it.

Abstract classes define default im-
plementations for some methods in
order to make it easier to create
subclasses. If they must depend on
implementation details, those details
should be accessed by sending a
message to the object itself [58].
Messages sent to the object can eas-
ily be overridden by subclasses,
allowing subclasses to provide a map-
ping from the abstract implemen-
tation assumed by the superclass to

I I I I Ill

the concrete implementation they
support.

For example, consider an abstract
class Point with two concrete
subclasses, Cartesian Point and
Polar Point. The addition of two
points can be abstractly defined in
terms of adding the x and y coor-
dinates. If the x andy coordinates are
accessed through a message send,
each subclass can then supply its own
implementation of these messages
based on its internal representation.

Otalect-Oriented
SOWWare EngSneering
For the past 10 years, the group at
Senter for Industriforskning (SI) has
been developing highly interactive,
flexible and personalized work en-
vironments for executives and other
professionals in public service, com-
merce and industry. The power of
object orientation has been critical to
their success. All their efforts in soft-
ware engineering have been aimed at
providing improved leverage for their
development efforts.

When the group started develop-
ment work in 1983, there was a con-
flict between functional specifications
(which clearly indicated that Small-
talk-80 was the preferred devel-
opment environment), and the
requirements for reliability and
maintainability (which clearly in-
dicated a well-proven software engi-
neering environment based on a
traditional programming language).
The group at SI opted for the
Smalltalk- environment because of
its object orientation, development
environment and rich class library.
Over the years they have developed
a personal work environment based
on Smalltalk to augment the initial
system.

This personal work environment
consists of a Smalltalk image con-
taining a kernel module and a num-
ber of optional function modules that
can be configured to suit an in-
dividual user’s requirements. There
are also a number of background
services such as a persistent object
store, that are mainly written in C.
There are approximately 100,000
lines of Smalltalk- source code.

I I I I I I I I Illll11m1- OWNCT-ONINNTND DE6IDN

COMMUNICATIOW8OFI”EACY/Scptembcr 199O/Vo1.33, No.9

The group at SI believes that the
key to program quality is simplicity:
simple models, simple designs, sim-
ple code. They also believe that if a
problem is really understood, a sim-
ple solution can be found. Their
strategy has been to develop methods
and tools that first permit the model-
ing of small subproblems until they
are fully understood, then to com-
bine the small models into larger
ones in a controlled manner.

They term their method
OORASS, Object-Oriented Role
Analysis, Synthesis and Structuring,
because of its three critical operations
[41]. These operations are based on
the encapsulation, inheritance and
dynamic binding properties of object
orientation. Analysis describes sub-
problems by encapsulating behavior
in the objects of an object model,
which is termed a Role Model. Syn-
thesis defines composite objects by
inheriting behavior from several
simpler objects. Structure Specifica-
tion prescribes how objects can be
bound together in an actual instance
of a system.

The goal of the OORASS research
is to help people create an organized
structure of collaborating objects and
to represent such a structure in a
computer. They believe that three
distinct abstractions of objects are
needed if the full benefits of object
orientation are to be attained: the
how, the what, and the why of objects.
The hole, is the class of the object,
describing its internal implementa-
tion. The what is the type of the ob-
ject, describing its external behavior.
The U&J is a new concept call Role,
which represents the task of the ob-
ject within the organized structure of
objects.

The method developed at SI con-
sists of five main parts. Each part
represents a systems development
phase as well as part of the total
description of the application under
development. Objects are at the
center of attention at all time; each
part provides some information
about the application objects or their
structures.

The Role Model part separates the
problem domain into more or less

overlapping areas of concern. Each such
area is modeled as a structure of in-
teracting objects. Each object is
abstracted into a Role according to its
purpose in the Role Model structure.

The Object S’ecification part in-
tegrates the individual Role Models
by letting a single composite object play
different Roles in different models.

The Class Implementation part pro-
vides programs for all required
objects.

The Structure S’ec(fication provides
a kind of grammar or Meta Model that
describes the possible collaborations
between objects, (i.e. how they can be
configured). This process is like
multi-dimensional dominoes, where
any piece may be attached to any
other piece if they both have free and
compatible interfaces where they can
be joined.

Finally, the Object Instantiation part
creates objects and interconnects
them according to the prescriptions
given in the Meta Model, and as in-
stances of classes programmed in the
Class Implementation part.

Role ModelInS

Modeling consists of two subparts:
analysis for modeling subproblems,
and synthesis for joining small
models into larger ones. The task in
object-oriented design is to describe
patterns of interactions and to assign
responsibility to individual objects in
such a way that the total system of
objects is as simple as possible. An
object that is to play a certain Role in
an object structure must understand
certain messages (e.g., have certain
behavior).

Analysis: Simple Role
Modeling
There is a many-to-many correspon-
dence between Role and Behavior.
For example, consider a document
modeled as a structure of objects.
Suppose that the documents tree has
a document object as its root, and a
number of sub-objects as shown in
Figure 5.

This example has nine different
Roles, but several objects may be
given identical behavior. There are
only three kinds of object behaviors:

a general TreeObject that can play
the Roles of document, title page, section,
andfigure; a TextObject that can play
the Roles of title, authol; paragraph, and
caption, and a PictureObject that can
play the Role ofpicture. Thus, con-
siderable code reuse has been
achieved by separating the concepts
of Role and Behavior. Furthermore,
programs can be written to imple-
ment a great variety of document
structures: many different Role
Models may be constructed from a
toolkit containing a limited selection
of three different object behaviors.

Each Role in a Role Model is
given a name. Its responsibilities are
described to determine which other
Roles it needs to know about and
what messages it sends to these col-
laborators. While during execution
the origin of a certain message is ir-
relevant to an object, the right to send
a certain message is a very important
part of the privileges that are assigned
to objects in design.

The diagrams used for Role
Models are very simple. Computer-
based tools support drawing Role
Model diagrams, and more detailed
information is always immediately
available to the designer through a
direct manipulation tool interface.

For example, the document Role
Model describes what is meant by a
document in object-oriented terms.
Objects that serve the same purpose
in the model, for example section ob-
jects, have been abstracted into
Roles. Attributes to the symbols in
the diagram give further informa-
tion, such as a description of the
responsibility of the objects for each
Role, and details about messages that
objects may send to collaborators.

Synthesis: Composite ROIe
Modellna

Typical designs are usually too large
to be comprehended as a whole. By
subdividing into subareas of con-
cern, and creating Role Models for
each subarea, a problem can be de-
composed. This reduces modeling to
manageable proportions, but creates
a new problem of integrating smaller
models into a model of the entire
system.

This problem can be simply solved
in the few cases where the problem
can be considered hierarchical. What
appears as one object on the higher
level is then represented by its own
Role Model on a lower level.

However, problems are usually
more complex. If one model is not
just detailing the internals of a single
object in another model, a Role Syn-
thesis construction mechanism is
needed to integrate models. For ex-
ample, given a number of Role
Models A,B ,... with Roles Al, A2,
A3 ,..., B1, B2, B3 ,..., a Composite Role
AnBm.. can be created such that the
newly created Role object may
simultaneously play Role n from
Model A, Role m from Model B, and
so on.

Thus a many-to-many correspon-
dence between Role and Object ex-
ists, because an object may play
several different Roles, and a given
Role may be played by different ob-
jects. For example, a person object

may play the Role of a materials pro-
vider in a manufacturing Role Model,
and the Role of a buyer in a materials
purchasing Role model. The person
object then acts as an integrator be-
tween the two Role models, using
knowledge about the market in its
materials provider Role, and knowledge
about manufacturing in its buyer
Role. Another example is illustrated
in Figure 6.

Role Synthesis makes it possible to
reuse Role Models. Consider the
document example. The document
Role could inherit properties of the
parent Role in the Tree Model, the
titlepage, section andfigure Roles could
inherit both parent and child, and the
leaf nodes title, authoq paragraph, picture
and caption could inherit the child
Role.

The advantages of Role Synthesis
are threefold. First, a tree structure
does not need to be reinvented every
time one is needed. Second, if tree
structures need additional properties

F-3 document

FIGURE 5. A Role Model diagram for the document enample.
A Role is denoted by a large circle, collaborators are joined bv Ilnes, the Small ClrtleS at the
line ends denote the cardlnallty: A double circle denotes that for one of the near Role there
are none, one or many of the far Role; a single circle denotes that for one near Role there Is
exactly one far Role. A symbol inslde a small circle (not shown in the figure) denotes the
messages that the near Role may send to the far Role, no symbol means that the near Role
does not send any messages to the far Role. In the computer-based tool, any symbol may be
selected to obtain a new window with further Information.

I I I I I I I

then it can be added in only one
place, namely the Role Model of a
primitive tree. Third, classes for the
parent and child Roles could be im-
plemented; the document objects
and all other used of tree structures
could then be programmed as sub-
classes of these. This provides a
mechanism for describing a class
library on the abstraction level of
modeling and design.

object Specl~lcatlon

Role Modeling studies objects and
their interactions. To create an Ob-
ject Specification, the focus changes
from the overall structure of objects
to a single object and its immediate
collaborators. Again, synthesis may

r

Synthesized
Role Model
of general

tree

FIGURE 6. The gaM3l node object of
a tree structure can be synthesized as a
Role that can Play both the parent Role and
the CM/d Role.
In the left part of this example, we create a
Role Model modeling a primitive, two-level
tree: One parent Role collaborates with any
number of ch//UROles. We can now syn-
thesize a Role Model for a general tree bv
letting all lntermedlate tree nodes Inherit
behavior both from the pafent Role and the
cMU Role. Intermediate Roles. nodes, mav
therefore play parent Roles vii-a+fls iheli
children. and ch//d Roles vls-a-vls their
parentis shown In the right part of the
figure.

I I I I I I II 1111111- ONIECT-ONINNTND DEUON

be used to create specifications for
objects that may play multiple Roles.

For example, consider the para-
graph Role in a document. There
could be two very different kinds of
objects that could fill this Role. A
PlainText could contain text local to
the current document. A Database-
Text could represent the latest version
of some text record existing in a data-
base. Every time the document was
printed or inspected, the latest ver-
sion of this record would be inserted.
And, if a user were allowed to edit
such a text, the database should im-
mediately be updated.

A DatabaseText object would
need to play some Role such as data-
base record in a Role Model describing
a database system. It would, of
course, also have to play the Role of
paragraph in the document Role Model.
These two Role Models could be
combined into one, but this would
create unnecessary complexity.

Instead, a better solution is to
specify DatabaseText as an object
that can both play the Role ofparu-
graph in the document Role Model and
database record in a database Role
Model. This specification defines the
object by describing all the Roles it
must be able to play and all its in-
teraction with its collaborators. This

COMY”WICIIIOWOOCT”E~,CU/September 199O/Vo1.33, No.9

FIGURE 7. An Object Speclflcatlon.
An object Speclflcatlon describes all the
Roles an object must play and thus the
combined set of Interactions with all col-
laborators. The object Is shown In the
center, Its collaborators are shown as shaded
circles around It. In this case, the Role Is a
paragraph of a sectlon, the CM/d of a
parent, and a Iecofdof a database.

is illustrated in Figure 7, where the
object being specified is shown in the
center of the diagram with its col-
laborators around it.

Interdependencies between Role
Models must also be considered. In
the DataBaseText example, mes-
sages in the document domain hav-
ing to do with getting and putting
text will presumably have to perform
some database operations. Con-
versely, if the database content is
changed, some action should be
taken in the document domain to
reflect the new values. Such in-
terdependencies are recorded in rele-
vant message descriptions.

Class lmplementatlon

The word class, in OORASS, is used
in a very restricted sense: a class is a
program that implements a certain
object specification. The class is the
only place where the internal struc-
ture of an object is seen. Just as a
class can implement objects that play
several roles, many different classes
can implement objects that play a
particular role (i.e., there is a many-
to-one relationship between classes
and roles). The object being specified
in an Object Specification is often
synthesized as a composite of several
Roles. This inheritance structure
gives important hints as to a possible
class hierarchy in a program. Specili-
tally, reusable Role Models should
be implemented as reusable class
libraries.

Structure Speclileatlon

The Object Specification part defines
the external properties of an object in
sufficient detail to decide whether ob-
jects should be connected. Any object
that satisfies the assumptions an ob-
ject makes about a collaborator may
be connected to that object and play
the Role of its collaborator.

Given a reasonably rich and
generic set of Object Specifications
with at least one class implemented
for each, clearly a variety of correct
object structures can be built. Only
some will be meaningful in the user
domain. For example, in our docu-
ment, the programs will tolerate title
paga that come between two sections in

115

I I I

the middle of the document. How-
ever, this is not typically what the
user expects.

Therefore, the Meta Model de-
scribes the subset of workable object
combinations that have meaningful
structures in the user domain. This
description is used during Object In-
stantiation to control the generation
of an actual object structure [36].
The Meta Model can contain other
information, such as number restric-
tions, parameters to initialize the at-
tributes of an instance to adapt it to
play a certain Role, access restric-
tions, default display and formatting
information, in addition to pure
structural information.

System Instantlatlon
The System Instantiation part
creates an actual object structure by
matching classes defined in the Ob-
ject Implementation with the pre-
scriptions of the Meta Model. This is
typically a dynamic process where
new objects are being created and
unused ones are garbage collected
throughout the lifetime of the
application.

An object may collaborate with
any other object that has the desired
behavior regardless of implementa-
tion. For maximum flexibility, the
binding of class to collaborator is
postponed until the moment that
new objects are actually created. The
program needing the new object
knows the name of its Class Specifi-
cation, a run-time mechanism
matches this name to its preferred
implementation and creates an in-
stance of the corresponding class.
This is similar to the LaLonde’s use
of exemplars [26].

Further Work

The OORASS method has been
evolving over several years. Suc-
cessful programs have been
developed exploiting the class Im-
plementation, Structure Specifica-
tion and Object Instantiation tools.
A number of different systems have
been generated from an identical
program base by defining different
Meta Models. New capabilities have
been added by just programming the

I I I

new classes and including them in a
Meta Model.

Currently, a group consisting of
people from SI, Taskon A/S and the
University of Oslo is developing a
method for systems analysis and
model description, employing mes-
sage scenarios and formal protocol
definitions as an extension to the
Role Models. They also are integrat-
ing their CASE tools to provide a
seamless model of all information.
This will also include an extension of
their literate programming facility, so
that formal and informal informa-
tion can be intermixed [42]. They
hope that their method will provide
a high-level model description of
reusable classes that could become
the technical foundation for a mar-
ketplace of reusable class libraries.

Frameworks-Reusable
Designs
One of the main advantages of
object-oriented programming is that
it supports software reuse. It is easy
to see how object-oriented program-
ming makes program components
more reusable, but in the long run
the reuse of design is probably more
important than the reuse of code.
Although abstract classes provide a
way to express the design of a class,
classes are too fine-grained. A frame-
work is a collection of abstract and
concrete classes and the interfaces be-
tween them, and is the design for a
subsystem. Abstract classes are fairly
well understood, but much less has
been written about frameworks, and
there is much less of a consensus on
them.

The first widely used framework
was Model/View/Controller, the
Smalltalk- user interface frame-
work [25]. It showed that object-
oriented programming was ideally
suited for implementing graphical
user interfaces. MacApp is a later
user interface framework designed
specifically for implementing Macin-
tosh applications [46]. It is actually a
framework for all aspects of Macin-
tosh applications, such as printing
and storing documents on the disk.
Recently there have been a number
of user interface frameworks from

I I I I I

universities, such as the Andrew
Toolkit from Carnegie Mellon Uni-
versity [38], Interviews by Mark
Linton at Stanford [32, 541 and
ET+ + from the University of Zurich
[55, 561. Each of these frameworks
improves the state of the art in user
interface framework design in some
way, building on the successes and
lessons of earlier systems.

Frameworks are not limited to
user interfaces, but can be applied to
any area of software design. They are
one of the main reasons that object-
oriented programming has such as a
good reputation for promoting reuse.
However, frameworks are different
from simple class libraries, and re-
quire more work to design.

Frameworks

The idea and terminology of frame-
works were developed at Xerox
PARC by the Smalltalk group. Peter
Deutsch describes frameworks in [ll]
(and less thoroughly in [lo]). He em-
phasizes that the most important
aspect of a framework that is reused
is the interface or specification of the
components. Although frameworks
reuse implementation as well, reuse
of interface design and functional
factoring is more important because
they constitute the key intellectual
content of software and are far more
difficult to create or re-create than
code. This is the key insight behind
frameworks.

Just as an abstract class is the de-
sign of a concrete class, a framework
is the design of a subsystem. It con-
sists of a number of abstract and con-
crete classes. (Deutsch uses the term
“single class frameworks” and
“multiclass frameworks”, but we in-
stead say “abstract class” and
“framework”). Part of the definition
of each abstract class is its respon-
sibilities. In addition, a framework
consists of the collaborations between
the objects in its abstract classes.

Like a subsystem, a framework is
a mixture of abstract and concrete
classes. It differs from a subsystem by
being designed to be refined. It can
be refined by changing the configu-
ration of its components or by creat-
ing new kinds of components (i.e.,

116

I I 1111 I I I I I I I I 1111111E1- OBlECT-OWlM7ED DEBIDH

new subclasses of existing classes). A
mature framework will have a large
class library of concrete subclasses of
each abstract class, so that most of the
time an application can be “plugged
together” from existing components.
Even when new subclasses are
needed, they are easy to produce be-
cause the abstract superclasses pro-
vide their design and much of their
code.

For example, the user interface
subsystem of a Smalltalk- applica-
tion is almost always produced with
the Model/View/Controller user in-
terface framework. It will be built by
connecting views and controllers to-
gether and parameterizing them
with menus, messages to send on
particular events, etc. Even when an

. .
application requires one or two new
user interface classes, most of the
classes in the user interface will come
from the standard class library.

Brad Cox has likened reuse in an
object-oriented system to integrated
circuits and has advocated the use
“software ICs,” which are black-box
components that can be used in a
variety of contexts [7]. However,
designing a framework is more like
designing a family of chips or a logic
family. The individual components
are less important than the standard
interfaces they share, and designing
the interfaces is harder than design-
ing individual components.

Most frameworks will be domain
dependent. Although most of the
publicized frameworks focus on user
interfaces, frameworks can be used
for much more than just user inter-
faces. User interface frameworks are
popular in part because they are
relatively domain-independent, are
useful to most programmers, and
correspond to a traditional computer
science area of specialization. How-
ever, most subsystems will be appli-
cation-dependent, so the frameworks
that generate them will be too. Good
examples are frameworks for VLSI
routing algorithms [16], or for con-
trolling real-time psychophysiology
experiments [14]. Thus, most frame-
works will be of interest only to appli-
cation programmers working in 2
particular area.

There are several projects at the
University of Illinois at Urbana-
Champaign to design frameworks.
The TS optimizing compiler for
Smalltalk has a framework for code
generation and optimization [23].
Code optimizations are never com-
pletely machine-independent; a
framework for code optimization al-
lows the compiler designer to easily
build a customized optimization
phase. The FOIBLE framework for
visual programming environments
provides a customizable graphics
editor to which a visual language
designer can add an interpreter,
resulting in a visual programming
language [21].

Choices is an object-oriented op-
erating system written in C + + at the
University of Illinois under the direc-
tion of Roy Campbell. It is more than
just an operating system; it is an
operating system framework. It con-
sists of interlocking frameworks for
file systems [33], virtual memory
[44], communication [61], and pro-
cess scheduling [43]. The file system
framework shown in Figure 8, which

was developed primarily by Peter
Madany, has been used to imple-
ment a number of different file
systems, including BSD and System
V, MSDOS, a log-based file system
an object store, and archive files.

The Inner File Svriem
Framework

One of the central classes of the file
system framework in Choices is
MemoryObject. A MemoryObject
is a sequence of identically sized
blocks. It is responsible for reading
and writing its contents one or more
blocks at a time. It also is responsible
for maintaining the number of blocks
that it contains. Thus, the key opera-
tions provided by MemoryObjects
are read, write, and size. Many parts of
a file system are MemoryObjects,
such as files and disks. MemoryOb-
jects are the part of the file system
framework that is most used by the
rest of the operating system. In par-
ticular, the virtual memory system
also uses MemoryObjects, so they
act as an interface between the file
system and the virtual memory

Stream-based
file system
framework

PICURE 8. The Chokes file system framework.

COYM”WICIIIOII*OFT”ElCY,Septemher 199o/vo1.33, No.9 117

I I I

system. Files are stored on disks,
but both files and disks are
MemoryObjects.

ObjectContainers keep track of
partitioning a large MemoryObject
into a set of smaller MemoryOb-
jects, (i.e., a disk into a set of files).
For example, the Unix i-node table is
an ObjectContainer. ObjectCon-
tainers can create new MemoryOb-
jects, delete old ones, and can return
the i-th MemoryObject that it
stores. Thus, its operations are create,
delete, and open.

A BlockAllocator manages the
free blocks of a MemoryObject that
is partitioned by an ObjectCon-
tainer. Of course, some MemoryOb-
jects have fixed partitions and so
have no free blocks, but most file
systems allow files to be created and
deleted dynamically. Files use alloca-
tors to acquire, and release blocks of
the MemoryObject on which they
are stored. The only operations
defined by BlockAllocator are
allocate and free.

MemoryObject, ObjectContain-
ers, and BlockAllocators provide
the foundation of any file system.
Some of the components of a file
system will be reused unchanged
from the class library. For example,
a disk can be partitioned by an Ob-
jectcontainer into a fixed number
of fuced-sized file systems. Others are
subclasses of standard abstract
classes. For example, a Unix System
V fde system will consist of a subclass
of ObjectContainer (SysVCon-
tainer) to implement the System V
i-node table, a subclass of Memory-
Object (SysVlnode) to implement
System V i-nodes, and a subclass of
BlockAllocator to implement the
System V free list.

Since a System V file system has a
subclass for every abstract compo-
nent of the framework, it might seem
that the framework is not helping
very much. However, not only is it
very helpful for the designer to start
with a high-level design that de-
scribes the components and their in-
terfaces, but some of the concrete
classes inherit a lot of code from their
abstract superclasses. In particular,
SVlDContainer inherits operations

I I I

from ObjectContainer to manage a
table of open MemoryObjects and
from its superclass UnixContainer
to read and write disk inodes, while
SVIDlnode inherits most of its oper-
ations from Unixlnode.

Outer File System

Framework

MemoryObject, ObjectContainer,
and BlockAllocator are only the
core of the file system framework.
There is another layer that represents
an application program’s view of the
file system. An ObjectDictionary
(e.g., directory) converts a logical file
name into the index of the file in an
ObjectContainer. Its operations are
open, create, and delete. A Directory dif-
fers from an ObjectContainer
because a MemoryObject can be in
only one ObjectContainer, but can
be in many directories. Directories
are usually associated with a single
ObjectContainer, and are usually
stored on the same MemoryObject
that the ObjectContainer partitions.

There are currently two separate
but compatible user views of files.
FileStream provides a Unix-like in-
terface to a file, with a current posi-
tion and a seek operation, in addition
to a read and a write. There is also a
PersistentObject class that supports

the transparent storage and retrieval
of objects from the disk. Like File-
Streams, PersistentObjects are
based on MemoryObjects. They
differ from FileStreams in that they
can refer directly to other Persistent-
Objects.

Other parts of the file system in-
clude MountTable, SymbolicLink,
Filesystemlnterface (which keeps
track of a current directory), and an
authentication system.

This layering of frameworks is
common, and is similar to other ways
that software designs are layered.
Some of the classes in the file system
framework are used in other parts of
Choices. MemoryObject is used by
the virtual memory system, while
Filesystemlnterface and the user
views of files such as FileStream and
PersistentObject are used by ap-
plication programs. BlockAlloca-
tors and ObjectContainers are

I I I I I

usually private. The user of a file
system does not need to know about
the private classes, but the designer
of a new type of file system does.

The Choices file system has gone
through many versions, and each
version is more general and reusable
than the previous ones. The core
classes have been stable for some
time, while the outer classes are
newer and still changing. This is
typical of reusable designs. Reusing
the early versions points out design
weaknesses that must then be cor-
rected. A framework’s designer can
be confident of its reusability only
after it has been successfully reused
several times.

In the fall of 1987, before the file
system framework had been de-
signed, a dozen students in an oper-
ating system course built a System V
compatible We system for Choices.
In the fall of 1989 two teams: a one-
person team, and a two-person team,
each built a log-based file system for
Choices using the framework. The
System V file system specification
was simpler and much better docu-
mented than the log-based file sys-
tem, but the students using the
framework were more successful
than the earlier students who did
not use it. This experience not only
increased confidence in the reusabil-
ity of the file system framework, it
illustrates why frameworks are so
important.

Research on FrameWOrkS

Designing a framework is itself re-
search. The designer must under-
stand the possible design decisions
and must organize them in a set of
classes related by the client/server,
whole/part, and subclass/superclass
relationships. Thus, the designer is
developing a theory of the problem
domain and expressing it with an
object-oriented design.

There are three main research
areas related to frameworks. The first
is designing frameworks: what are
the characteristics of a good frame-
work and how is one designed? The
second is using frameworks: how
does one configure a particular appli-
cation based on a framework. The

September 199O/Vol.33, No.9/COMYUNICAllONSOFT”E~~Y

I n I I I I I

third is describing frameworks: what
notation is needed, other than that
applicable to object-oriented design
in general?

Deslmnlng FrOmeWOrkS

Most people realize they need a
framework when they notice similar-
ities in existing applications. These
do not have to be object-oriented sys-
tems; designers with extensive expe-
rience in an application domain often
can tell which frameworks would be
useful for their applications. Sub-
systems also may evolve into frame-
works as they are reused. Designing
a good framework is more than just
extracting the abstract classes from a
subsystem. A subsystem only has to
work for one application, but a
framework must work for many ap-
plications. Thus, a framework is a
generalization of the subsystems that
can be built from it.

Good frameworks are usually the
result of many design iterations and
a lot of hard work. Designing a
framework is like developing a the-
ory. The theory is tested by trying to
reuse the framework. Unsuccessful
experiments require a change in the
theory. Lack of generality in a frame-
work shows up when it is used to
build applications, so its weaknesses
cannot be found until after it is de-
signed and reused. Thus, iteration
seems necessary.

Since iteration is necessary, it
should be performed as early in the
design life cycle as possible. Many
iterations can be done on paper be-
fore any code is entered in the com-
puter. However, the proof of the
adequacy of a design is whether it can
be implemented well.

Changes made to a framework
during its design tend to fall into cer-
tain patterns [22]. Responsibilities
are moved from one class to another.
Responsibilities (or even classes) are
broken into smaller components, so
that one part can be changed inde-
pendently of another part. Some-
times separately designed classes are
given a common superclass, which is
usually followed by migrating func-
tionality up into the new superclass
and preceded by renaming opera-

II I I I I I I 1111111111- ONINCTONINNTND DESIDW

CCHM”IICATICYSCFT~E ACWSeprember 199O/Vo1.33, No.9

tions on the different classes so that
they will share more of their inter-
face. These changes are an important
part of the process of designing
frameworks.

The Software Refactory project
(William Opdyke and Ralph John-
son) at the University of Illinois is
developing tools to manage changes
that occur during design iteration
[37]. Refactorings are the changes to
frameworks that do not add func-
tionality, but instead redistribute and
reorganize it. Refactorings are time-
consuming and error-prone when
done by hand, but the Software Re-
factory project is designing tools to
automate them. Thus, a program-
mer will just perform the “break class
into components” operation and
both the class and its clients will
be modified. This would make itera-
tion much easier and would let the
designer think about changes to a
design at a high level. Moreover,
changes to a framework can be prop-
agated to the applications that use it.
The result is that changes to a frame-
work will cost less and have a larger
benefit.

Using Frameworks

Using a framework is typically com-
prised of two activities:

l defining any new classes that are
needed, and

l configuring a set of objects by pro-
viding parameters to each object
and connecting them.

Ideally, no new classes are needed.
Frameworks are seldom ideal; most

.
applications must define new classes
within the framework. However,
even when new classes are needed,
most of the work of using a frame-
work is “plugging” or configuring
objects to,gether.

Programs that configure a set of
objects are very stylized. First, a set
of objects is created and each object
is initialized. Then, operations are
performed on the objects to connect
them. These programs are so similar
to each other that it is natural to think
that they can be written automati-
cally. Several of the user interface
frameworks have tools that will auto-

matically write the code to configure
a user interface. Glazier was devel-
oped at Tektronix to build subsys-
tems based on ModellViewlCon-
troller [l]. The NeXT Interface
Builder is a much more powerful tool
that builds user interface subsystems
from the NeXT user interface
framework [53].

Although specialized tools for con-
figuring applications for particular
frameworks are valuable, what is
really needed are tools that can con-
figure applications for any frame-
work. Scripting languages, which are
compact notations for constructing
applications from existing software
components, are a proposed solution
to the problem. An object-oriented
scripting language can serve the
same role for a framework that a shell
or a job control language can serve in
a conventional environment. Two
object-oriented scripting languages
have been developed at the Univer-
sity of Geneva, the Visual Scripting
Tool [24] and TEMPO [8]. TEMPO
is specialized for applications that
deal with concurrent activities and
temporal relationships between
them. The Visual Scripting Tool is a
visual programming language (i.e., it
is based on pictures instead of text).

DeSCrllslng Frameworks

Since most object-oriented program-
ming languages provide no direct
support for either abstract classes or
subsystems, it is not surprising that
there is no good notation for describ-
ing frameworks. Frameworks are
more than just the classes that they
contain, but include instructions for
making subclasses and for configur-
ing applications from the frame-
works. The ITHACA project is an
Esprit II project involving a number
of European companies, research
organizations, and universities to
design and build an integrated ap-
plication development and support
environment based on the object-
oriented programming approach
[40]. One of the goals of the project
is a formalization of frameworks.

The goal of the ITHACA project
is to reduce the long-term costs of ap-
plication development for standard

119

I I I I I I I I I I I

applications from selected applica-
tion domains. Besides a kernel of
object-oriented languages and com-
pilers, it will have an application
development environment consisting
of a set of programming tools and an
object-oriented software information
base. Only the software information
base is tailored to a particular ap-
plication domain. Initially there are
four target domains: public admin-
istration, office automation, financial
applications, and chemistry.

A key idea in the ITHACA proj-
ect is the generic application, which
is similar to what we have called a
framework. The software information
base contains generic applications
and other software components, as
well. Users of the ITHACA environ-
ment will have two kinds of roles: that
of the application engineer who tailors
an ITHACA environment to an ap-
plication domain, and that of the
application developer who generates
specific applications using the com-
ponents in the information base
created by an application engineer.
The application engineer is con-
cerned with all phases of software
development from requirements
analysis to coding and validation, but
does so for generic applications
rather than specific ones. The appli-
cation developer starts with a generic
application and configures the final
application from the available soft-
ware components to meet applica-
tion-specific requirements.

The software information base is
more than just a class library because
it contains and organizes the applica-
tion domain model, requirements,
specifications, software components,
and documentation. The primary
mechanism for organizing the soft-
ware information base is the frame,

which collects and organizes all infor-
mation pertaining to an application,
whether generic or specific. Generic
applications are also specified with
frames. There is a hierarchy of
frames, from generic to specific. An
applications developer builds frames
for specific applications by selecting
a generic application frame and
filling in the missing information,
such as new requirements and the

resulting design choices.
An important part of the expected

life cycle is to reevaluate generic ap-
plication frames to improve their
reusability. This might require that
new software components be added
to the software information base.
This corresponds closely to the way
that frameworks tend to be designed.
In fact, generic applications are quite
similar to frameworks, with the pri-
mary differences being that the
ITHACA project is trying to explic-
itly capture requirements and spec-
ifications, while these typically are
described informally in the docu-
mentation of most frameworks. The
iterative nature of object-oriented
design is addressed in work on recog-
nizing class hierarchies, leading to
algorithms that automatically re-
structure a class hierarchy upon in-
troduction of one or more classes [5].

Demeter
The goal of the Demeter project, led
by Karl Lieberherr at Northeastern
University, is to develop CASE tools
and their theoretical foundations to
improve the productivity of object-
oriented designers and programmers
[31]. One of the key ideas is the class
dictionary, which is similar to a
grammar. Class dictionaries describe
the part-of and inheritance relation-
ships between classes. They can be
interpreted as class definitions, type
definitions, or grammars. Different
tools within the Demeter system use
different interpretations of class dic-
tionaries to automatically construct
various kinds of programs, such as
class definitions, customized print
routines for each class, and parsers
that can read object descriptions
from a text fde and convert them into
objects.

A class dictionary defines the
structure of a class; a class module
adds interface definitions. Class dic-
tionaries are language independent,
but method definitions in class
modules are written in particular
language. Demeter automatically
produces programs from class mod-
ules. It creates the class definitions,
printers and parsers and adds the
code in the class modules to them.

Demeter currently produces either
Flavors or C++ programs.

Class Dletlonarler

Demeter classes fall into three cate-
gories: construction classes; repeti-
tion classes; and alternation classes.
A class dictionary can be parame-
trized by other classes and can inherit
from other classes. For example:

CLASS Basket HAS PARTS
content: Sequence(Fruit)
weight: Number

END CLASS Basket.

defines a construction class named
Basket with components content and
weight.

An example of a repetition class is
class Sequence. Sequence has a class
parameter; S. A Sequence contains
zero or more parts of the specified
class:

CLASS Sequence(S) IS LIST
REPEAT {S}

END CLASS Sequence.

An example of an alternation class
is class Fruit:

CLASS Fruit IS EITHER
Apple OR Orange
COMMON PARTS
weight: Number
HAS INTERFACE

VIRTUAL cost0 RETURNS
Number

END CLASS Fruit.

where Apple and Orange are prob-
ably simple construction classes. An
alternation class is always an abstract
class. Thus, there is no need to gen-
erate functions to construct objects
for it. For example, in the definition
of cost, the keyword VIRTUAL
means that cost may be redefined in
an Apple or Orange.

SoUware EvOlutlOn

Demeter takes advantage of its
grammar-based foundation to pro-
vide tools that help plan the evolution
of software [29]. Class modules are
usually implemented according to a
growth plan that is determined by a
class dictionary. A growth plan for a
class dictionary D is a sequence of in-
creasingly larger subclass dic-

120

tionaries, starting with a smallest
subclass dictionary of D.

Each implementation phase com-
pletes the method definitions for
some subset of the classes specified in
the class module and provides a test
suite for debugging the code. The
order of the phases and the classes in-
volved in a phase are chosen in a way
that each phase is an extension of the
previous one. Each phase can suc-
cessfully execute test cases for earlier
phases. Method definitions are
added incrementally until the ap-
plication is completely implemented.
Thus, a growth plan provides for
many small steps in the development
process, and each step can run all the
tests of the first.

Another way to think of this ap-
proach is that each phase cor-
responds to an increasingly detailed
prototype. At each phase, the pro-
totype works on at least some of the
objects. Later phases should work on
all the objects that earlier phases
worked on. Lieberherr has shown
that the growth plan problem is
NPhard, but has also developed
useful heuristics for it that are
satisfactory in practice [28].

Construetlng Classes
AutomatIcally

One of the advantages of the similar-
ity of grammars and class diction-
aries is that Demeter can infer class
dictionaries from object descriptions
[27]. Currently Demeter can abstract
recursive class dictionaries from ob-
ject descriptions. This problem is in
general NP-hard, but for the special
case of single-inheritance class dic-
tionaries Lieberherr’s group has
developed an efficient algorithm.
Objects must be hierarchical and
cannot have cycles. For example, a
particular basket of fruit might be:

<Basket > content: (<Apple >
weight: 12, <Orange> weight: 4)

weight: 16.

The task of constructing class dic-
tionaries then becomes finding a
grammar that accepts the object
descriptions. The class dictionary
must accept only object descriptions
that are similar to the input set (i.e.,

the grammar that accepts every ob-
ject description is not useful). More-
over, the class dictionary should be as
small as possible, which prevents it
from simply listing the original object
descriptions.

The main motivation for con-
structing classes from examples is
that specific examples are easier to
invent than general classes. In the
same way, parametrized classes are
harder to think about than classes
without class parameters. The
Demeter system can automatically
build parametrized classes from non-
parametrized ones. Often the need
for parameterized classes is not ob-
vious until after the classes have been
written, so tools to automatically
parametrize classes are valuable for
both design and maintenance.

The Law # Demeter

A common problem in object-
oriented design is collaboration
graphs that are too complex, that is,
too strong of a coupling between
classes. The Law of Demeter is a rule
of good programming style that
simplifies collaboration graphs and
minimizes coupling between classes
[30, 311. Stated briefly, the Law of
Demeter says that one should not
retrieve a part of an object and then
perform an operation on that part,
but should instead perform the oper-
ation on the original object, which
can implement the operation by dele-
gating it to the part. The result of
following the Law of Demeter is that
a method depends only on the inter-
faces of its arguments and its instance
variables, but it does not depend on
their structure.

The Law of Demeter increases in-
formation hiding. Ideally, a class
hides its implementation, but it is
common for programmers to define
an interface that lets clients of a class
depend on its implementation de-
tails. As an extreme example, the
only methods defined by a class
might be accessing methods that
simply read or write the instance
variables. A more common situation
is where a client can get a pointer to
an array of components or to an in-
ternal hash table. Changing the rep-

resentation of the class will then
require changing all its clients. The
Law of Demeter will not completely
eliminate this, because it does not
prevent a method from retrieving a
component and then using it as an
argument to another method, it just
prevents the component from being
the direct receiver of a message.

The Law of Demeter can be en-
forced; the Demeter system contains
tools that will check whether a design
follows the Law of Demeter. It re-
duces unnecessary object coupling
and helps new programmers learn
good programming style. This does
not reduce the power of object-
oriented programming, because any
program can be transformed into a
program that follows the Law of
Demeter.

The Law of Demeter minimizes
the coupling between classes and
makes it easier to change a class in-
terface. It increases information
hiding by ensuring that one class
cannot depend on the implementa-
tion of another. The Law of Demeter
localizes type information. Thus,
programs are easier to understand
because each method depends on
only a few interfaces. There are some
disadvantages to the Law of Demeter
[45], but it is an important contribu-
tion to object-oriented design rules.

The Demeter project is trying to
find other rules of good design. Ob-
ject interactions imply dependencies
between the classes of the objects.
These dependencies affect the reus-
ability of classes and the cost of future
development and maintenance of the
software. Thus, rules like the Law of
Demeter can have a big impact on
the cost of developing software.

Conclusion
One indication that the work on
standardization of terminology by
the group at Hewlett-Packard is
needed is the differences in terminol-
ogy seen here. However, the fact that
different groups are forced to invent
terminology for the same concepts
indicates that the concepts are
important.

One set of similar concepts is in-
terface description, contracts, and

121

I I I I I I I I I I I

role. These phrases all describe look-
ing at an object by its specification.
This is important because (as the
Hewlett-Packard definition clearly
states) classes are really implementa-
tion, and designers emphasize the
way objects behave instead of how
they are constructed. Thus, object-
oriented designers need ways oftalk-
ing about specification. “Contract”
differs from the other two phrases
because both the client and the server
are included in the contract, while
“interface description” and “role”
emphasize the view of the servers.
This difference might not be very im-
portant, since clients will refer to
servers by their specification and not
their class.

The Hewlett-Packard ensembles
seem to be the same as the Tektronix
subsystems. These phrases describe
groups of objects that are designed to
work together. This is important
because it shows that classes alone do
not provide enough structure for
large systems. Therefore, additional
structure is needed to organize how
objects work together. None of the
existing object-oriented program-
ming languages or programming
environments provide very good sup-
port for describing how groups of ob-
jects work together.

Scripting languages have the same
purpose as the Structure Specilica-
tions and Object Instantiation of
OORASS, and may indeed be the
same. They emphasize the fact that
an important part of creating an
object-oriented application is con-
necting objects to each other and pro-
viding them with parameters. This
will be an important area of research
in the future, since the emergence of
frameworks will mean that a larger
fraction of programming will be con-
figuring existing components.

Each design method described
here differs from the others signifi-
cantly. The Tektronix process has two
main phases, exploration and a de-
tailed design phase. The exploration
phase uses modeling to find classes,
responsibilities for each class, and
collaborations between objects of dif-
ferent classes. The exploration phase
is very iterative; finding a new re-

sponsibility might lead to new col-
laborations or classes. The detailed
design phase determines inheritance,
subsystems, and contracts, and fo-
cuses on building a design that will be
as reusable as possible.

OORASS looks at a much larger
part of the life cycle. It has five stages,
and the first two, finding roles and
object specification, cover the same
part of the life cycle as the Tektronix
method. It does not seem to provide
as good a mechanism for automati-
cally finding faults in the design as
the Tektronix design process. How-
ever, the Tektronix design method
could probably be adapted for use
as the first two steps in the SI de-
sign process. On the other hand,
OORASS not only includes class im-
plementation (the third stage), but
the structure specification stage and
the object instantiation stage describe
how applications are configured from
preexisting parts.

The Demeter design process is to
construct class dictionaries, convert
them into class modules by adding
interface specifications, and then to
build and follow a growth plan to im-
plement the classes. This differs from
the other two design processes in em-
phasizing the structure of classes.
Also, inheritance is emphasized from
the beginning. Although all three
design processes emphasize looking
at examples, the Demeter system
provides tools to automatically con-
struct concrete classes from ex-
amples, and abstract classes from
concrete classes. Thus, it is even
more example-driven than the other
two.

Although each of these methods
has its own unique characteristics,
they are more complementary than
they are competing. Differences in
vocabulary hide their similarities. As
object-oriented design methods ma-
ture, they will borrow ideas from one
another. The design methods of the
future will integrate and expand on
these ideas to support larger-scale
design and composition at all levels
and help object-oriented programm-
ing live up to its potential to make
software more reusable and hence
less expensive and more reliable. q

References

1. Alexander, J.H. Paneless panes for

Smalltalk windows. In Proceedings of

OOPSLA ‘87. SIGPLAN Not. (ACM) 22,
12 (Oct. 1987), 287-294.

2. Apollo Computer. Network Computing

System, Tech. Rep. I-27, 1987.

3. Beck, K. and Cunningham, H. A

laboratory for teaching object-oriented

thinking. In Proceedings of OOPSLA ‘89.
SIGPLAN Not. (ACM) 24, 10 (New
Orleans, Louisiana, October 1989), 1-6.

4. Bobrow, D.G., DeMichel, L.G., Gabriel,

R.P., Keene, S.E., Kiczales, G., Moon,

D.A. Common Lisp object system

specification X3J13. In SIGPLAN Not.
(ACM) 23, 9, (1988).

5. Casais, E. Reorganizing an object system.

In Object-Oriented Development, D. Tsichrit-

zis, Ed. Centre Universitaire d’Informati-

que, Universite de Geneve, 1989. pp.

161-189.

6. Goad, P. and Yom-don, E. Object-Oriented
An&ix Prentice-Hall, Englewood Cliffs,

NJ, 1990.

7. Cox, B. Object-Oriented Programming: An

Evolutionary Approach. Addison-Wesley,

Reading, Mass., 1986.

8. Dami, L., Fiume, E., Nierstrasz, O., and

Tsichritzis, D. Temporal scripts for ob-

jects, Active Object Enuironments, DC.

Tsichritzis, Ed. Centre Universitaire

d’Informatique, Universite de Geneve,

June 1988, pp. 144-161.

9. De Champeaux, D. and Olthoff, W.

Towards an object-oriented analysis

technique. In Proceedings ofthe Pacific North-
west Software Quality ConJmnce (September

1989) pp. 323-338.

10. Deutsch, L. P. Levels of reuse in the

Smalltalk- programming system. In

Tutorial: Software Reusability, P. Freeman,

Ed. IEEE Computer Society Press,

Washington, DC., 1987.

11 Deutsch, L. P. Design nuce andframeworks
in the Smalltalk- system. In Software
Reusability, Vol. II, T.J. Biggerstaff and

A. J. Perlis, Eds. ACM Press, pp. 57-71,

1989.

12. Ewing, JJ. An object-oriented operating

system interface. In Proceedings oJOOI’SLA
‘86 Conference Proceedings. SIGPLAN

Not. (ACM) 21, 11 (Portland, Oregon,

November 1986), pp. 46-56.

13. Fishman, D.H. et al. Iris: An object-

oriented data base. system. ACM ?iansac-
tiom on Office Information Systems, 5-l (1987),

48-69.

14. Foote, B. Designing to facilitate change

with object-oriented frameworks.

Master’s thesis. University of Illinois at

Urbana-Champaign, 1988.

15. Goldberg, A. and Robson, D. Small-

122

I I I I I I I

talk-80: The Language and its Im@mmtation.

Addison-Wesley, 1983.

16. Gossain, S. and Anderson, D.B. Design-

ing a class hierarchy for domain represen-

tation and reusability. In ProceedingsofT
‘89. (Paris, France, November 1989) pp.

201-210.

17. Halbert, D. and O’Brien, P. Using Types

and Inheritance in Object-Oriented

Languages. IEEE Software (Sept. 1987)

71-79.

18. Hewlett-Packard. HP New Wave Rejmnce
Guide. August 1989.

19. Hewlett-Packard, HP builds framework.

Electronic Engineering Times. June 10,

1989. 73-74.

20. ISO. Information, retrieval, and transfer

management for OSI. draft proposal.

Part I: Management and Information

Model. ISO/IEC JTCl/SC21 N, May

1989.

2 1. Jindrich, W.A. FOIBLE: A framework for

visual programming languages. Master’s

thesis, Univ. of Illinois at Urbana-

Champaign, 1990.

22. Johnson, E. and Foote, B. Designing

reusable classes. J. of Object-Oriented Pm-
gram. 1, 2 uune/July 1988), 22-35.

23. Johnson, R.E., Graver, ,J.O. and

Zurawski, L.W. TS: An optimizing com-

piler for Smalltalk. In Proceedings of
OOPSLA ‘88, SIGPLANNot. 23, 11 (San

Diego, Ca., September 1988) 18-26.

24. Kappel, G., Vitek, J., Nierstrasz, O.,

Gibbs, S., Junod, B., Stadelmann, M.,

Tsichritzis, D. An object-based visual

scripting environment. In Object Oriented
Deuelopment, Tsichritizis, Ed. Centre

Universitaire d’Informatique, Universite

de Geneve, 1989. pp. 123-142.

25. Kramer, G.E. and Pope, ST. A cookbook

for using the model-view-controller user

interface paradigm in Smalltalk-80.J. of

Object-Oriented Pmgram. 1, 3 (August/Sept.

1988), 26-49.

26. LaLonde, W. Designing families of data

types using exemplars. ACM Transaction
on Programming Languages and System, 11,
2 (April 1989), 212-248.

27. Lieberherr, K.J., Berstein, P. and Silva-

Lepe, I. From objects to classes:

Algorithms for object-oriented design.

Tech. Rep. Demeter-3, Northeastern

University, January 1990.

28. Lieberherr, K.J. and Holland, I. Assur-

ing good style for object-oriented pro-

grams. IEEE Software, (September 1989),

38-48.

29. Lieberherr, K.J. and Holland, I. Tools for

preventive software maintenance. In Con-
ference on Software Maintenance. (October

16-19, 1989), IEEE Press, Miami Beach,

Florida, pp. 2-13.

I I I I I l 111111111111- OBIECT-OBIEItTED DESION

30. Lieberherr, K.J., Holland, I., and Riel, Orleans, Louisiana) October 1989.

A.J. Object-oriented programming: an 337-346.

objective sense of style. In Proceedings of 43. Russo, V. and Campbell, R.H. Process

OOPSLA ‘88 ConJemce. SIGPLAN Not. Scheduling in Multiprocessor Operating

(ACM) 23, 11, (San Diego, Ca., Systems using Class Hierarchical Design.

September 1988) 323-334. In Proceedings of OOPSLA ‘88 SIGPLAN
Not. (ACM) 23, 11 (San Diego, California,

31. Lieberherr, KJ. and Riel, A.J. Demeter: Oct. 1988).
a [CASE] study of s0ftware growth 44. Russo, V. and Campbell, R.H. Virtual
through parameterized c1asses.J. of Ob$ct- Memory and Backing Storage Manage-
OrientedProgmm. 1, 3 (August/September ment in Multiprocessor Operating
1988), 8-22. Systems using Class Hierarchical Design.

32. Linton, M.A., Vlissides, J.M. and
In Proceedings of OOPSLA ‘89 SIGPLAN

Calder, P.R. Composing user interfaces
Not. 24, 10, (New Orleans, Louisiana

with InterViews. Computel- 22, 2 (Feb.
Sept. 1989) 267-278.

1989), 8-22.
45. Sakkinen, M. Comments on the law of

33. Madany, P.W., Campbell, R.H., Russo, Demeter and C++. In SIGPLAN Not.
V.F. and Leyens, D.E. A Class Hierarchy (ACM) 23, 12 (December 1988), 38-44.
for Building Stream-Oriented File 46. Schmucker, K. Object Oriented Prop-mm-
Systems. In Proceedings ofthe 1989 Ewopean minglfor theM&ntosh, Hayden, Hasbrouck
Conjerence on Object-Oriented Programming. Heights, New Jersey, 1986.
(July 1989, Nottingham, UK) S. Cook, 47. Shlaer, S. and Mellor, S. Object-Oriented
Ed., Cambridge University Press. System Analysti. Yourdon Press, 1988.
311-328. 48. Snyder, A. Encapsulation and inheritance

34. Meyer, B. 06ject-OrientedSoftware Comtmc- in object-oriented programming

tion. Prentice-Hall, 1988. languages. In Proceedings of OOPSLA ‘86

35. Miller, MS., Cunningham, H., Lee, C., Conjerence. SIGPLAN Not. (ACM) 2f, 11

Vegdahl, S.R., The Application Ac- (Portland, Oregon, November 1986),

celerator Illustration System. In OOPSLA 38-45.

‘86 Conjerence Proceedings SIGPLAN Not. 49. Snyder, A. The essence of objects. Rep.

(ACM) 2, 11 (Portland, Oregon, STL-89-25. Software Technology Labo-

November 1986), 294-302. ratory, Hewlett-Packard Laboratories,

36. Nordhagen, E., Generic Object Oriented Palo Alto, CA.

Systems. In Proceedings OJTOOLS ‘89. (Paris, 50. Snyder, A. An abstract object model for

France, November 1989) pp. 131-140. object-oriented systems. STL-90-22,

37. Opdyke, W. and Johnson, R. Refactor- Software Technology Laboratory,

ing: An aid in designing application Hewlett-Packard Laboratories, Palo Alto,

frameworks. In Pnmedings ojtheSymposiun CA.

on Object-Oriented Programming Emphasizing 51. Snyder, A., Hill, W. and Olthoss, W. A

Practical Applications, September 1989. glossary ofcommon object-oriented ter-

38. Palay, A.J., Hansen, W.J., Kazar, M.L., minology. Rep. STL-89-26, Software

Sherman, M., Wadlow, M.G., Neuen- Technology Laboratory, Hewlett-Packard

dorffer, T.P., Stern, Z., Bader, M. and Laboratories, Palo Alto, CA.

Peter, T. The Andrew Toolkit-An Overview, 52. Stroustrup, B. The C++ Programming

USENIX Association Winter Con- Language. Addison-Wesley, 1986.

ference, Dallas, 1988. 53. Thompson, T. The NeXT Step. Byte 14,

39. Paseman, W. The Atherton Software 3 (March 1989), 265-271.

Backplane: An Architecture for Tool In- 54. Vlissides, J.M. and Linton, M.A. Uni-

tegration. Unix Rev. (April 1989). draw: A framework for building domain-

40. Profrock, A.K. Tsichritzis, D., Muller, G., specific graphical editors. In Proceedings of
and Arder, M. ITHACA: An integrated the ACM User Interface Software and Tech-

toolkit for highly advanced computer ap- nologies ‘89 Conference (November 1989).

plications. In Object-OrientedDeuelopment. 55. Weinand, A., Gamma, E. and Marty, R.

Tsichritzis, D., Ed. Universitede Geneve, ET++ -An object oriented application

1989, pp 321-344. framework in C++. In Proceedings of
41. Reenskaug, T. and Nordhagen, E. The OOPOSLA ‘88 SIGPLANNot. (ACM) 23,

Description of Complex Object-Oriented 11 (San Diego, CA., September 1988),

Systems: Version 1. Senter for In- 46-57.

dustriforskning, Oslo, Norway, 1989. 56. W&and, A., Gamma, E., and Marty, R.

42. Reenskaug, T. and Skaar, A.L. An En- Design and implementation of ET++, a

vironment for Literate Smalltalk Pro- seamless object-oriented application

gramming. In Proceeding5 ojOOPSLA ‘89 framework. Structured Program. 10, 2
SIGPLAN Not. (ACM) 24, 10. (New (1989), 63-87.

COMMUYlCATlONeOFT”EACI1/September 199O/Vol.33. No.9 123

I I

57. Wirfs-Brock, R.J. An Integrated Color
Smalltalk- System. In Proceed+ of
OOPSLA ‘88SIGPLANNot. (ACA4)23, 11,
(San Diego, CA., September 1988) 71-82.

58. Wirfs-Brock, A. and Wilkerson, B.
Variables Limit Reusability. J O&ct-

Oriented Program. 2, 1 (May/June 1990),
34-40.

59. Wirfs-Brock, R. and Wilkerson, B.
Object-Oriented Design: A Responsi-

bility-Driven Approach. In Proceeding-s of
OOPSLA ‘89 Confeeem. SIGPLAN Not.
(ACM) 24, 10, (New Orleans, Louisiana,
October 1989), 71-76.

60. Wirfs-Brock, R., Wilkerson, B., and
Wiener, L. Designing Object-Oriented
Software. Prentice-Hall, 1990.

61. Zweig, J. and Johnson, R. Conduits: A
communication abstraction in C++ To

be published in the USENIX C++ Con-
ference. 1990.

I I I

Common wmmlnoiopy

Contact: Alan Snyder
Hewlett-Packard Laboratories
P.O. Box 10490
Palo Alto, CA 94303-0971

snyder@hplabs.hp.com

ObJect-Orlented Analysis

Contact: Dennis de Champmu
Hewlett-Packard Laboratories

P.O. Box 10490
Palo Alto, CA 94303-0971
champeaux@hplabs.hp.com

Research in Responslblllty

Delven DeSlgn

contact: Rebecca Wirfs-Bmck
Tektronix, Inc.
P.O. Box 500, Mail Station 47-720

Beaverton, Oregon 97077
rebeccaw@tekig5.pen.tek.com

ObJect-Orlented SOFtware

Englneerlng

contact: Tygve Reemkaug
Senter for Industriforskning
P.O. Box 124 Blinden
0314 Oslo 3, Norway

Following is a list of contact names and
addresses for the associated sections of
this article.

Classic Ada” brings the power of object-oriented
programming to Ada developers.

Classic-Ada supports:
l Inheritance

l Dynamic Binding
l Polymorphism
l Prototyping

Your benefits arc:
l Rcuscablc Software

l Fewer Lines of Code
. Increased Productivity

l Reduced Complexity

Software Productivity Solutions, Inc.
P.O. Box 361697 l Melbourne, Florida 32936
(407)984-3370

Cwcle #28 on Reader Serwce Card

I I I I I

FramewOrl(s-Reusable

Designs
contact: Ralph E. Johnson
Department of Computer Science
University of Illinois at Urbana-

Champaign
1304 West Springfield Ave.
Urbana, Illinois 61801-2987
johnson@p.cs.uiuc.edu

Demeter

contact: Karl Lieberherr
Northeastern University, College of
Computer Science

Cullinane Hall, 360 Huntington Ave.,
Boston, MA 02115
lieber@corwin.CCS.northeastern.EDU

CR Categories and Subject Descriptors:

D.2.1 [Software Engineering]: Require-
ments/Specifications; D.2.10 [Software

Engineering]: Design-methodologies, rep-
resentation; D.3.3 [Programming Lan-

guages]: Language Constructs

General Terms: Documentation, Experi-
mentation

Additional Key Words and Phrases: Object-
oriented design research

About the Authors:

REBECCA J. WIRFS-BROCK is a prin-

cipal software engineer at Tektronix, Inc., and
coauthor of Designing Object-Oriented software
(Prentice-Hall, 1990). She has spent 15 years
designing software and managing software
products. She managed the development of

Tektronix Color Smalltalk, and has developed
and taught courses on object-oriented design.
Author’s Present Address: Tektronix, Inc.,
P.O. Box 500, Mail Station 47-720, Beaverton,
OR 97077.
RALPH E. JOHNSON is an assistant pro-
fessor in the Department ofcomputer Science
at the University of Illinois at Urbana-Cham-

paign. He has extensive experience with
object-oriented programming in both C + +
and Smalltalk, having been involved with
medium-sized applications, such as operating
systems and an optimizing Smalltalk com-
piler. Author’s Present Address: Department
of Computer Science, University of Illinois at
Urbana-Champaign, 1304 West Springfield
Ave., Urbana, Illinois 61801-2987.

@ 1990 ACM OOOl-0782/90/0900-0104 $1.50

Permission to copy without fee all or part of this
material is granted provided that the copies are not
made or distributed for direct commercial advan-
tage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given
that copying is by permission ofthe Association for
Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

