
The state of object-oriented design oriented design method that focuses 
is evolving rapidly. This survey de- on object responsibilities and col- 
scribes what are currently thought to laborations. The method includes 
be the key ideas. Although it is nec- graphical tools for improving encap- 
essarily incomplete, it contains both sulation and understanding patterns 
academic and industrial efforts and of ob.ject communication. Trygve 
describes work in both the United Reenskaug at the Senter for Industri- 
States and Europe. It ignores well- forskning in Oslo, Norway has been 
known ideas, like that of Coad [6] developing an object-oriented design 

tern, which generates language- 
specific class definitions from 
language-independent class dic- 
tionaries. The Demeter system in- 
cludes tools for checking design rules 
and for implementing a design. 

Common Terminology 
Hewlett-Packard is involved in many 

and Meyer [34], in favor of less 
widely known projects. 

Research in object-oriented design 
can be divided many ways. Some re- 
search is focused on describing a 
design process. Some is focused on 
finding rules for good designs. A 
third approach is to build tools to 
support design. Most of the research 
described in this article does all three. 

We first present work from Alan 
Snyder at Hewlett-Packard on devel- 
oping a common framework for 
object-oriented terminology. The 
goal of this effo:rt is to develop and 
communicate a corporate-wide com- 
mon language for specifying and 
communicating about objects. 

We next look into another research 
activity at Hewlett-Packard, led by 
Dennis de Champeaux. De Champ- 
eaux is developing a model for 
object-based analysis. His current 
research focuses on the use of a 
trigger-based model for inter-object 
communicationa and development of 
a top-down approach to analysis us- 
ing ensembles. 

We then survey two research activ- 
ities that prescribe the design process. 
Rebecca Wirfs-Elrock from Tektronix 
has been developing an object- 

method that focuses on roles, syn- 
thesis, and structuring. The method, 
called Object-Oriented Role Analy- 
sis, Syntheses and Structuring, is 
based on first modeling small sub- 
problems, and then combining small 
models into larger ones in a con- 
trolled manner using both inheri- 
tance (synthesis) and run-time 
binding (structuring). 

We then present investigations by 
Ralph Johnson at the University of 
Illinois at Urbana-Champaign into 
object-oriented frameworks and the 
reuse of large-scale designs. A 
framework is a high-level design or 

. 
application architecture and consists 
of a suite of classes that are specifi- 
cally designed to be refined and used 
as a group. Past work has focused on 
describing frameworks and how they 
are developed. Current work in- 
cludes the design of tools to make it 
easier to design frameworks. 

Finally, we present some results 
from the research group in object- 
oriented software engineering at 
Northeastern University, led by Karl 
Lieberherr. They have been working 
on object-oriented Computer As- 
sisted Software Engineering (CASE) 
technology, called the Demeter sys- 

activities that involve object-oriented 
technology. In addition to object- 
oriented programming [4, 15, 521, 
these activities include object- 
oriented databases [13], user inter- 
faces [18], application architectures 
[19], application integration plat- 
forms [39], distributed systems [2], 
and network management architec- 
tures [20]. Each area has an asso- 
ciated external technical community, 
and many have associated standards 
activities. These areas differ in both 
the forms in which object-oriented 
concepts appear and the terms used 
to refer to the concepts. This diver- 
sity has caused serious communica- 
tion problems and has hampered the 
convergence of these technologies to 
provide comprehensive and consis- 
tent object-based solutions. 

To address this issue, represen- 
tatives from the various technologies 
were brought together to exchange 
information and develop a shared 
understanding. The first step in 
developing the glossary of common 
terminology was to identify and de- 
fine a set of core concepts that could 
be used to characterize and contrast 
the various object-oriented technol- 
ogies familiar to the task force mem- 
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bers. These concepts were defined in 
a general way to apply to the wide 
variety of technologies under con- 
sideration. Each core concept that 
was identified had a term selected for 
it. The result was the abstraction of 
the essential common core concepts 
of object-oriented -technology, and a 
common terminology This common 
terminology has been endorsed by 
the management of the computer 
business within Hewlett-Packard and 
is being promoted within corporate 
training programs. 

The essential concepts are sum- 
marized as follows: 

l An ob@ci embodies an abstraction. 
It provides services to its clients. This 
principle emphasizes that an object 
is not just a collection of data. It ex- 
plicitly embodies an abstraction 
that is meaningful to its clients, 
which may be programs or users. 
The services are computations that 
are appropriate to the abstraction. 

l Clients request services from objects. 
Clients respect the abstractions 
embodied in an object. Objects are 
encapsulated: clients are prevented 
from making direct access to the 
data associated with an object. In- 
stead, clients issue requests for 
services that are performed by ob- 
jects. Performing a request involves 
executing some code, a method, on 
the associated data. A request iden- 
tifies the requested service (the 
operation), as well as the objects that 
are to perform the service. These 
objects can be identified unam- 
biguously and reliably (this is 
called object refmence). Requests may 
include other parameters, and may 
return results. The set of services 
that an object provides may be de- 
scribed in the form of an interface 
description. 

l Requests can be ,peneric. A client can 
issue the same request to different 
kinds ofobjects that provide similar 
services. Specifically, performing a 
request may involve the execution 
of different code depending upon 
the objects ident:ified in the request. 

l Objects can be c:lassified in terms of 
the services they provide. This clas- 

sification may be based on explicit 
interface descriptions. An object 
could provide a subset of the ser- 
vices provided by another object, 
leading to hierarchical classifiation 

and an interface hierarchy. 
l Objects can share implementa- 

tions. Mechanisms are generally 
provided that allow multiple ob- 
jects, called instances, to share the 
same implementation (often called 
a clacss). Also, mechanisms are often 
provided by which the implemen- 
tation of one object cannot just 
share the implementation of an- 
other object, but can also extend or 
refine it (implementation inheritance 
or delegation) [48]. 

There are several commonly used 
terms that have been frequent 
sources of confusion and miscom- 
munication within Hewlett-Packard. 
The term that causes the most con- 
fusion is encapsulation. Encapsulation 
has three possible meanings: the en- 
forcement of abstraction barriers; the 
act of integrating foreign compo- 
nents into a system; and the mecha- 
nism for controlling access to services 
by different users. (The recom- 
mended terms identified by the task 
force for these three concepts are en- 
capsulation, embedding and protection.) 
Another confusing term is inheritance. 
Inheritance has two primary mean- 
ings: a mechanism by which object 
implementations can be organized to 
share descriptions; and a classifica- 
tion of objects based on common 
behavior or common external inter- 
faces. (The recommended terms for 
these concepts are implementation in- 

heritance and interfuce hierarchy.) Other 
confusing terms are type and class, 
whose multiple meanings refer to 
either the external interfaces of ob- 
jects or the implementations of 
objects. 

Snyder has found that the distinc- 
tions between multiple meanings can 
be subtle, even to people who are 
familiar with basic concepts. The 
results of the common object ter- 
minology effort are available in two 
technical reports [49, 511. In addition 
to providing a definition for each 
concept, the reports identify syno- 

nyms, give examples, state the im- 
portance of the concept, and present 
the rationale for the choosing the 
recommended term. 

Rather than develop a compre- 
hensive terminology the most impor- 
tant concepts and those with multiple 
meanings or ambiguous terms were 
identified and defined. The terms 
were selected to be broadly ap- 
plicable to multiple domains, and 
were not restricted to programming 
terminology. This led researchers at 
Hewlett-Packard to adopt, in some 
cases, terminology that is different 
from the more commonly used 
object-oriented programming termi- 
nology. Adoption of the terminology 
has been the result of personal ini- 
tiative and leadership by members of 
the original task force. For example, 
the terminology has been adopted in 
the architectural documents for 
Hewlett-Packard’s NewWave Com- 
puting Architecture, the company’s 
strategic initiative for its computer 
business. 

We present the entry from the HP 
technical report for the term generic re- 
quest to illustrate the complete 
descriptions that were developed. 

Generic Request 
Definition: 

A request is a statement that 
specifies a service to be carried out by 
objects. A request has a name, iden- 
tifies the objects that are to provide 
the service (the providers), and may 
take arguments and produce results. 
Ageneric request is a request that may 
be issued to different objects that pro- 
vide (similar) services with different 
implementations and possibly dif- 
ferent behaviors. The request itself 
does not determine how the services 
will be performed. When a request is 
issued, a selection process determines 
the actual code to be executed to per- 
form the service. More than one ob- 
ject can participate in providing a 
service in response to a request. 

Example: 
A print request can be made to 

any printable object (e.g., a docu- 
ment or spreadsheet). The request 
may also specify a device object 
where the document will be printed. 

106 



I I I I I I I 

Importance: 
Generic requests are a major fac- 

tor in the reusability of object- 
oriented programs. Code written in 
terms of generic requests can be used 
for different purposes when the 
requests are sent to objects that inter- 
pret them differently. In object- 
oriented user interfaces, generic re- 
quests allow multiple applications to 
share a common interaction style, 
improving ease of use. 

Synonyms and Related Terms: 
In the Iris database, issuing a ge- 

neric request is calledfunction invoca- 
tion. In C + + it is called virtual member 

function invocation. In general, a re- 
quest may designate multiple objects 
to provide the service. A message is a 
generic request for a service issued to 
a single object; issuing such a request 
is called message sending. The ability 
to support generic requests is also 
called polymorphism and function 

overloading. 

Rationale: 
The use of the word generic high- 

lights the feature that a single request 
may denote a range of related ser- 
vices. We de-emphasize the tradi- 
tional term message for two reasons: 
One is the common misconception 
that message sending implies concur- 
rent execution by the sender and the 
receiver. The other is the implication 
that a message is sent to a single loca- 
tion at which it is handled. Although 
in traditional object-oriented sys- 
tems, services are provided by indi- 
vidual objects, systems like the Iris 
database and the Common Lisp Ob- 
ject System (CLOS) have begun to 
explore more general models in 
which the implementation of a single 
service is provided jointly by multi- 
ple objects. While the integration of 
this concept with the traditional 
object-oriented model is not yet clear, 
it is clear that the more general model 
is needed to handle certain real prob- 
lems. A classic example is the prob- 
lem of printing a document on a 
printer, the implementation of which 
may differ based on both the kind of 
document and the kind of printer. 

Common terminology within a sin- 

gle organization is only an inter- 
mediate solution. The ultimate goal 
is consensus within the technical 
community at large. As a step in this 
direction, Hewlett-Packard is par- 
ticipating in the Object Management 
Group (OMG), an industry consor- 
tium chartered to promote the wide- 
spread adoption of object technology. 
The OMG is actively working to in- 
fluence the future directions of 
object-oriented technology, specili- 
tally through the adoption of a plat- 
form-independent object-oriented 
applications environment. The work 
described above has been incor- 
porated and extended by the OMG 
technical committee in creating a 
“standards manual” to guide the for- 
mulation of and responses to requests 
for technolo,gy. 

An “abstract object model” [50] 
has been defined which provides an 
organized and more detailed presen- 
tation of concepts and terminology. 
This abstract object model also par- 
tially defines a model of compu- 
tation. The partial nature of this 
description is in keeping with the 
OMG’s policy of adopting existing 
technologies rather than designing 
new ones. Any existing technology 
submitted to the OMG will likely 
define its own concrete object model 
based upon this abstract object 
model. The abstract object model 
provides a framework for such con- 
crete object models. A concrete ob- 
ject model would elaborate upon the 
abstract object model by making it 
more specific, for example, by delin- 
ing the form of a request, and would 
populate the abstract object model by 
introducing specific instances of ob- 
ject model entities, such as specific 
operations. 

To illustrate the evolution of ter- 
minology, here is the definition for 
request from the abstract object 
model: 

Clients request services by issuing 
requests. A request is an event (i.e., 
something that occurs at a par- 
ticular time during the execution 
of the computational system). The 
information associated with a re- 
quest consists of an operation and 
zero or more (actual) parameters. 

Operations are (potentially) 
generic, meaning that a single 
operation can be requested of ob- 
jects with different implementa- 
tions, resulting in observably 
different behavior. Operations are 
created by explicit action; each 
such action creates an operation 
that is distinct from operations 
created previously or in the future. 
A value is anything that is a possi- 
ble (actual) parameter in a re- 
quest. A value may identify an 
object, for the purpose of perform- 
ing the request. A value that iden- 
tifies an object is called an object 
name. A handle is an object name 
that unambiguously identifies a 
particular object. Within certain 
pragmatic limits of space and 
time, a handle will reliably identify 
the same object each time the han- 
dle is used in a request. A request 
causes a service to be performed 
on behalf of the client. One out- 
come of performing a service may 
be that some results are returned 
to the client. The results associated 
with a request may include values 
as well as status information in- 
dicating that exceptional condi- 
tions were raised in attempting to 
perform the requested service. 

There is a subtle change in this 
new description from the original. In 
the earlier definition the request was 
called generic. In the newer terminol- 
ogy, it is the operation that is called 
generic. This change resulted from 
making the definition of request 
more formal. Several possible mean- 
ings were considered: the form issued 
by the user (for example, an invoca- 
tion form in a program text), the in- 
formation provided (the operation 
and the actual arguments), or the 
computational event itself. 

The last option was chosen both 
for its utility, since the results are 
associated with the event, and ease of 
formalization, since the syntactic 
form cannot easily be formalized in 
an abstract form. The original delini- 
tion of generic request assumed the 
first meaning. With the new mean- 
ing, it no longer made sense: the 
same request (event) cannot be is- 
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sued to different objects. Therefore, 
the concept of generic was associated 
with operation. 

Efforts are continuing within 
Hewlett-Packard and elsewhere to 
further refine these concepts and the 
abstract object model and to work 
toward consensus within the tech- 
nical community, 

Object-Orlenteu AnmlySlS 

Another research <activity at Hewlett- 
Packard addresses the object-ori- 
ented paradigm for analysis. The 
goal of this research is to develop an 
analysis method that can be inte- 
grated with object-oriented design. A 
primary objective of this research is 
to develop a method that does not 
assume sequential computation. [9]. 

The analysis method should allow 
for what de Champeaux terms unlim- 
itedformalization. The method should 
not impose formalization on the ana- 
lyst. However, if validation of the im- 
plementation is required, it should be 
verifiable against the results of 
analysis. 

The object-oriented paradigm 
classically has its roots in sequential 
programming languages. Object in- 
teraction in such a context is too 
simplistic: the sender passes an 
operation name and arguments to 
the receiver. Control is initially 
passed to the receiver. The receiver 
next executes the desired operation 
and sends the result back to the 
sender. Finally, control is returned to 
the sender. This model of control and 
information flow is not rich enough 
to describe all the causal connections 
between objects an analyst needs to 
model. 

Shlaer and Mellor have developed 
an object-oriented process model that 
relies on data flow diagrams from 
Structured Analysis to describe the 
actions in their state models [47]. In 
their model, interaction between ob- 
jects is described indirectly via the oc- 
currence of an external data store in 
a data flow diagram. 

De Champeaux is exploring 
whether triggers provide a more 
direct mechanism for modeling 
causal interactions between objects. 
A trigger does not carry data, the in- 
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itiator is not suspended, and it does 
not expect a return value. The only 
effect of a trigger is to initiate a state 
change by the recipient. 

Another subtlety that must be 
modeled is how to deal with a trigger 
that cannot be handled by the recip- 
ient, perhaps because an additional 
condition for a triggered transition is 
not satisfied. Should the trigger be 
lost, buffered, or signal an error con- 
dition? Each of these responses is 
appropriate under certain circum- 
stances. This suggests that a richer 
interobject interaction model than a 
trigger is necessa.ry. 

This has led to consideration of 
additional object interaction forms, 
such as: 

trigger-and-wait-for-acknowledge- 
ment (where the initiator waits for 
acknowledgement of receipt of the 
trigger), 

send-no-wait (where data and the trig- 
ger are simultaneously transmitted), 

send-and-wait-to-acknowledge-of- 
reception (where the initiator triggers 
a transition, while transmitting a 
value that will be consumed by an ac- 
tion on the transition; the sender 
blocks until it receives acknowledge- 
ment that the trigger and value have 
arrived), or 

send-and-wait-for-reply (similar to 
the above example except for the 
sender is blocked until a value is 
returned). 

Determining an appropriate set of 
additional forms to describe inter- 
object interactions is a current re- 
search topic. 

Ensembles 
An analyst using traditional struc- 
tured analysis techniques obtains a 
top-down view of a system. Process 
decomposition is a well-known tech- 
nique. Similar mechanisms are 
needed for objects. 

For example, in analyzing a bank- 
ing application, an interest rate, a 
branch office, a teller machine, a cor- 
porate account, a loan officer, or a 
monthly statement are all candidate 
objects to model during analysis. 
However, they obviously represent 
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different layers in the problem 
domain. 

De Champeaux is investigating an 
appropriate abstraction layering and 
decomposition technique for select- 
ing objects during analysis that 
facilitates such a layered analysis. 
Currently he is exploring ensembles 
as a technique for creating and ana- 
lyzing objects in an ordered fashion. 

Ensembles represent a cluster or 
bundle of less abstract entities which 
are either objects or lower-level ob- 
jects. Ensembles, like objects, can be 
modeled by attributes and optionally 
a state-transition machine, can inter- 
act with other objects or ensembles, 
and have an interface model. A ma- 
jor distinction between ensembles 
and objects is that an ensemble ha: 
internal parallelism, while an object 
is a finite state machine. 

The main purpose of an ensemble 
is to hide details of a set of objects or 
subensembles that are irrelevant out- 
side the ensemble. Like classes of ob- 
jects, classes of ensembles can be 
modeled. An important part of an 
ensemble’s information model is a 
description of its constituent objects 
and subensembles. Additional en- 
semble attributes may model features 
that apply to an ensemble’s constit- 
uents as a whole. For example, con- 
sider a fleet of ships represented as an 
ensemble. The individual ships share 
the direction in which they are going. 
Thus, we can model direction as an 
attribute of a fleet. Summary infor- 
mation may also be modeled such as 
the number of ships in the fleet. 

When an ensemble has noncon- 
stituent attributes, it is often appro- 
priate to develop a state-transition 
model for it. Inter-ensemble or object 
interactions can then be described. A 
major difference between an object 
and an ensemble is that ensembles 
have a forwarding mechanism for 
triggers and messages that mediates 
between external entities and ensem- 
ble constituents. From outside an 
ensemble, it may appear as if mes- 
sages to an ensemble directly cause 
ensemble constituents to change 
state. For example, the return-to-port 
transition causes the direction of all 
ships in the fleet to change. When we 
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look inside the fleet ensemble, we see 
a different triggering and messaging 
pattern that actually achieves these 
consequences. Introducing ensem- 
bles thus allows low-level mecha- 
nisms to be hidden from higher-order 
functionality. 

Researck In Responsibil- 
Ity Driven Design 
Over a period of six years, Tektronix 
developed one of the largest and most 
experienced groups of Smalltalk pro- 
grammers and produced several 
major commercial and internal ap- 
plications [12,35,57]. Much experi- 
ence was gained in the process. In the 
last few years a number of individ- 
uals have focused on developing and 
teaching a method for designing 
object-oriented applications [59]. 
Past experience in Smallmlk develop- 
ment led to a strong sense of what 
constitutes good design. The result is 
a design process that has been ap- 
plied to a number of small and 
medium-sized engineering endeav- 
ors at Tektronix and elsewhere [60]. 

In developing a method for object- 
oriented design the following goals 
were set: 

1. Develop a model that encourages 
exploration of alternatives early in 
the design process, and that pro- 
vides a structure for analyzing and 
improving initial design decisions. 

2. Develop simple tools that help a 
design team to reason about a 
design. It should be easy to record 
and modify design decisions. 

3. Develop language-independent 
methods and guidelines. 

ResDmmslDlllty Driven 
Deslgn 

Responsibility-driven design models 
an application as a collection of ob- 
jects that collaborate to discharge 
their responsibilities. Responsibilities 
are a way to apportion work among 
objects that comprise the application. 
This approach stresses focusing on 
what actions must be accomplished 
and which objects will accomplish 
them. How each action is accom- 
plished is deferred until after a model 
of objects and the interactions is 
created and understood. 

Responsibilities include two key 
items: 

l the knowledge an object maintains, 
and 

l the actions an object can perform. 

Responsibilities are meant to convey 
a sense of the purpose of an object 
and its place in an application. Re- 
sponsibilities represent the publicly 
available services defined by objects. 
Note that responsibilities have been 
defined for objects, not classes, 
though the responsibility of a class 
can be defined as the responsibilities 
of its instances. 

Focusing on the responsibilities of 
objects maximizes information hid- 
ing and encapsulation. Information- 
hiding distinguishes the ability to 
perform some act from the specific 
steps taken to do so. An object reveals 
its abilities publicly, but it does not 
tell how it knows or does them. An 
object may need to know and do 
other things in order to fulfill its pub- 
lic responsibilities, but those things 
are considered private to the object. 

The responsibilities of an object 
are all the services it provides for all 
objects that communicate with it. 
Objects fulfill their responsibilities in 
one of two ways: by performing the 
necessary computation themselves, 
or by collaborating with other 
objects. 

Exploration 
The process of design can be parti- 
tioned into two distinct phases, as 
shown in Figure 1. To start, object- 
oriented design is exploratory. The 
designer looks for classes of objects, 
trying out a variety of schemes in 
order to discover the most natural 
and reasonable way to abstract the 
system. During the initial ex- 
ploratory phase of design the primary 
concern is to build a model of the key 
classes that will fulfill the overall 
design objectives. In this phase the 
major tasks are to 

l discover the classes required to 
model the application, 

l determine what behavior the sys- 
tem is responsible for, and assign 

Requlrementq Specification 

t 
Preliminary Design 

t 
Design 

FIGURE w. Phases of design: exploration and analysis. 
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these responsibilities to specific 
classes, and 

l determine what collaborations 
must occur between classes of ob- 
jects to fulfdl those responsibilities. 

Modeling is the process by which 
the logical objects in a problem space 
are mapped to the actual objects in a 
program. These steps produce a set 
of candidate classes for an applica- 
tion, a description of the knowledge 
and operations for which each class 
is responsible, and a description of 
collaborations between classes (i.e., 
between instances of those classes). 

ReCOrUlng The mltlal Desrsrn 

Beck and Cunningham [3] have 
found that index cards are a simple 
tool for teaching object-oriented con- 
cepts to designers. The responsibil- 
ity-driven design method uses index 
cards to capture initial classes, 
responsibilities and collaborations. 
They also record subclass-superclass 
relationships and common respon- 
sibilities defined by superclasses. 

Index cards work well because 
they are compact, easy to manipu- 
late, and easy to modify or discard. 
Index cards can be easily arranged 
on a tabletop and a reasonable num- 
ber of them viewed at the same time. 
They can be picked up, reorganized, 
and laid out in a new arrangement to 
amplify a fresh insight. 

Each candidate class is written on 
an index card, as shown in Figure 2. 
Each identified responsibility is suc- 
cinctly written on the left side of the 
card. If  collaborations are required to 
fulfill a responsibility, the name of 
each class that provides necessary 
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services is recorded to the right of the 
responsibility. Services defined by a 
class of objects include those listed on 
its index card, plus the responsibili- 
ties inherited from its superclasses. 

ImDrovlnm the tnltlal DesIan 

Once an initial model has been con- 
structed, it is crucial to turn a critic’s 
eye on the design. 

Without such attention, it is dif- 
ficult to obtain the reusability and 
refinability benefits touted by object- 
oriented technology. It is particularly 
important to construct properly 
structured hierarchies, to identify 
abstract classes, and to simplify inter- 
object communications. During this 
second, highly analytical phase of 
design the primary activities are to 

l factor the responsibilities into 
hierarchies to get maximum reus- 
ability from class designs, 

l model the collaborations between 
objects in more detail to better en- 
capsulate subsystems of objects, 
and 

l determine the protocols and com- 
plete a specification of classes, sub- 
systems of classes, and client-server 
contracts. 
Paying careful attention to struc- 

turing abstract and concrete classes, 
first, before improving object col- 
laborations, reduces rework required 
during later stages. 

Factorlnm HlerarClMeS 

A design is most extensible when a 
class inherits from another class only 
if it supports all of the responsibilities 
defined by that other class. Inheri- 
tance should model “is-kind-of’ rela- 
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tionships: every class should be a 
specific kind of its superclasses [17, 
261. Subclasses that support all of the 
responsibilities defined by their 
superclasses are more reusable be- 
cause it is easier to see where a new 
class should be placed within an ex- 
isting hierarchy. A corollary of this 
principle is that if a set of classes all 
support a common responsibility, 
they should inherit it from a common 
superclass. 

An important distinction to be 
made when designing a class is the 
primary purpose of abstract and 
concrete classes. Abstract classes 
are designed to be inherited. They 
exist solely to specify behavior that 
is reused by inheritance. Instances 
of abstract classes are never created 
as the system executes. Concrete 
classes are designed to be instan- 
tiated. Although it is often useful 
to inherit from a concrete class, 
concrete classes are usually not de- 
signed to be reusable by inheritance, 
but as components. 

One way to factor responsibilities 
higher in a class hierarchy is to design 
as many abstract classes as possible. 
In general, the more concrete sub- 
classes of an abstract class, the more 
likely the abstraction is to stand the 
tests of time and software enhance- 
ments. Only one responsibility is 
needed to define an abstract super- 
class, but at least two specific sub- 
classes of it are required before one 
can hope to design a generally useful 
abstraction. Defining many abstract 
superclasses as possible means that 
much common behavior has been 
factored into reusable abstractions. 

-01s ior UnUerstancllnD 
Dl8Ject Interactions 

Analyzing an exploratory design re- 
quires global understanding. Both 
graphical and conceptual tools are 
used to gain that understanding. 

Contracts 

A contract is a set of related responsi- 
bilities defined by a class. It describes 
the ways in which a given client can 
interact with a server. A contract is a 
list of requests that a client can make 
of a server. Both must fulfill the con- 
tract: the client by making only those 
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requests that the contract specifies, 
and the server by responding appro- 
priately to those requests. The rela- 
tionship is shown in Figure 3. 

Responsibilities found in the ex- 
ploratory phase are the basis for 
determining the contracts supported 
by a class. Not all responsibilities will 
be part of a contract. Some respon- 
sibilities represent behavior a class 
must have to support the fulfillment 
of contracts but which are not di- 
rectly exposed to other objects. These 
are private responsibilities. 

A class can support one or more 
distinct contracts. The word “con- 
tract” is not just another name for a 
responsibility. A responsibility is 
something one object does for other 
objects, either performing some ac- 
tion or responding with some infor- 
mation. A contract defines a cohesive 
set of responsibilities that a client can 
depend on. The cohesion between re- 
sponsibilities is a measure of how 
closely those responsibilities relate to 
one another. 

For example, all classes of num- 
bers support a contract to perform 
arithmetic operations. That contract 
includes responsibilities to perform 
addition, subtraction, multiplication 
and division. For example, let us say 
a new class defines the responsibility 
for its instances to know how to add 
themselves to other instances of the 
class. These new objects cannot be 
used as servers in places where some 
type of number is expected. The new 
class defines the addition responsibil- 
ity, but it does not support the entire 
set of responsibilities defined by the 
arithmetic contract. 

Often a class supports only a single 
contract. However, when a class has 
multiple roles or when its services can 
be factored into sets that are used by 
distinct clients, it will support multi- 
ple contracts. 

Subsystems 06 Classes 

An application is composed of more 
than just classes. A complex system 
requires many levels of abstraction, 
one nested within the other. Classes 
are a way of partitioning and struc- 
turing an application for reuse. But 
a design often has groups of classes 
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that collaborate to fulfill a larger 
purpose. 

A subsystem is a set of such classes 
(and possibly other subsystems) col- 
laborating to fulfill a common set of 
responsibilities. Although subsys- 
tems are not directly supported by 
existing object-oriented languages, 
they are an important way of think- 
ing about large object-oriented sys- 
tems. One way to test if a group of 
classes form a subsystem is to try to 
name the group. If  the group can be 
named, the larger role they cooperate 
to fulfill has been named. A sub- 
system is not just a bunch of classes, 
it should form a good abstraction. 

CoGaGora~~ons Graphs 

A collaborations graph helps analyze 
paths of communications and iden- 
tify potential subsystems. It graphi- 
cally displays the collaborations 
between classes and subsystems. The 
graph can be used to identify areas of 
unnecessary complexity, duplication, 
or places where encapsulation is 
violated. Collaborations graphs rep- 
resent classes, contracts, and collab- 
orations. In addition, collaborations 
graphs show superclass-subclass rela- 
tionships. 

A subclass in a responsibility- 
driven design should support all the 
contracts defined by its superclass. 
Therefore, in a collaborations graph, 
a superclass represents the contracts 
supported by all of its subclasses. 
This idea is represented by graphi- 
cally nesting subclasses within the 
bounds of their superclasses. 

One example of a subsystem, 
shown in Figure 4, is the printing 
subsystem encapsulating the classes 
Print %W?r, Printer, and its 
subclasses Dot Matrix Printer and 
Laser Printer. Together, these classes 
can be viewed as collaborating to 
print fdes. Although the Print Server 
collaborates with Queue, Queue is 
not part ofthe Printing Subsystem, 
because instances of the class Queue 
are used by classes outside the Print- 
ing Subsystem. A class is part of a 
subsystem only if it exists solely to 
fulfill the goals of that subsystem. 

Subsystems simplify a design, A 
large application is made less com- 

FIGURE 3. The Chit-s0NW COlltKICt 

Printing “I 
Subsystem 

rl Prin: 
Server 

LJ2 

Printer 

FIGURE 4. The Printing Subsvstem 
Collaborations Graph. 
Contracts are indicated by semicircles. 
Classes are drawn as rectangles, with 
subclasses nested within superclasses. An 
arrow is drawn from the client to the sewer 
supporting the contract. It is tvplcal for 
manv classes in a design to support just one 
contract, and, In fact, to inherit it from a 
superclass. 

plex by identifying subsystems within 
it and treating those subsystems as 
classes. An application can be de- 
composed into subsystems, and those 
subsystems can in turn be modeled 
until all required richness and detail 
have been specified. Ultimately, soft- 
ware is composed of classes, but to 
ignore the possibility of subsystems 
is to ignore one of the most fruit- 
ful aspects of the structure of an 
application. 

Subsystems are only conceptual 
entities; they do not exist during ex- 
ecution. They therefore cannot di- 
rectly fulfill any of their contracts. 
Instead, subsystems delegate each 
contract to a class within them that 
actually supports the contract. 

Because clients use the functional- 
ity of a subsystem through a clearly 
defined set of contracts, subsystem 
functionality can be extended with- 
out disrupting the rest of the applica- 
tion. A new contract can be defined, 
or an existing contract can be ex- 
tended to provide access to the addi- 
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tional functionality. For example, 
we could extend the Printing 
Subsystem by adding the ability to 
print at a specified time or to print a 
specified number of copies. Existing 
contracts would adequately deal with 
the new functionality; the Printing 
Subsystem would still print the con- 
tents of a tile (the old contract), but 
would do so in different ways (the 
new functionality). 

GuIdelInes ior SlmpIliylng 
#nteractlonr 
Subsystems are identified in order to 
simplify the patterns of collabora- 
tion. Without such simplification, 
the communication paths could flow 
from nearly any class to any other, 
with only the slenderest of justifica- 
tions and no coherent structuring. 
Such anarchic flow leads to spaghetti 
code-the same problem that struc- 
tured programming was designed to 
avoid. The problem is evident when 
one looks at a collaborations graph 
for such an application. The graph 
itself looks like spaghetti; it cannot be 
understood, and the application it 
represents is consequently impossible 
to maintain or modify sensibly. 

Simplifying the patterns of collab- 
oration translates into a simplitica- 
tion of the collaborations graph. 
Places where the graph is complex 
are areas that likely need to have col- 
laborations simplified. Often collab- 
orations graphs are drawn repeatedly 
to test simplification alternatives. 

Basic guidelines are used to sim- 
plify patterns of collaboration for the 
following purposes: 

l Minimize the number of collabo- 
rations a class has with other classes 
or subsystems. 

l Minimize the number of classes 
and subsystems to which a sub- 
system delegates. Another way of 
stating this principle is that the 
classes within a subsystem should 
be encapsulated whenever possible. 

l Minimize the number of different 
contracts supported by a class or a 
subsystem. 

lmptementlng Abstract 
CIasses 

Abstract classes are an important 
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part of an object-oriented design 
because they not only define behav- 
ior that is shared by many classes, 
they provide a reusable design for 
their subclasses. An implementation 
of an abstract class will use three 
kinds of methods to describe the con- 
tract between subclass and super- 
class, and between superclass and 
subclass. These are termed base 
methods, abstract methods and 
template methods. 

Base methods provide behavior that is 
generally useful to subclasses. The 
purpose of base methods is to imple- 
ment in one place behavior that can 
be inherited by subclasses. 

Abstract mthodr provide default behav- 
ior that subclasses are expected to 
override. The behavior does not do 
anything particularly useful, and 
subclasses are expected to reimple- 
ment the entire method. The pur- 
pose of abstract methods is to fully 
specify the subclasses responsibilities. 
Thus, the designer of a subclass 
uses the abstract methods as a 
specification. 

For example, the abstract class 
Displayable Object might define 
the method display as an abstract 
method. The method might, per- 
haps, display a black box the size of 
the object’s bounding box. In order 
for any element to display itself ac- 
curately, all subclasses of Display- 
able Object must reimplement the 
method display to provide accurate, 
reasonable display behavior for the 
particular kind of Displayable 
Object. 

72mplate methoa? provide step-by-step 
algorithms. Each step can invoke an 
abstract method, which the subclass 
must define, or a base method. The 
purpose of a template method is to 
provide an abstract definition of an 
algorithm. The subclass must imple- 
ment specific behavior to provide the 
services required by the algorithm. 

For example, the abstract class 
Filled Element, a subclass of 
Displayable Object, might define 
the method display as a template 
method with this algorithm: 
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drawBorder 
drawInterior 

This alters responsibilities of its 
subclasses from the abstract opera- 
tion specified in Displayable Object. 
Each subclass of Filled Element 
must implement the methods draw- 
Border and drawlnterior in such a 
manner that they provide reasonable 
behavior. 

An abstract class and its methods 
therefore serve as a minimal spec- 
ification of each of its subclasses. 
An important part of specifying an 
abstract class is specifying the be- 
havior for each method that is in- 
herited by its subclasses. Specifi- 
cation of methods for an abstract 
class should state whether the 
method is an abstract method that 
must be overridden, or a base or 
template method that should be 
directly inherited. 

Deilnlng Class Structure 

The implementation of a class hier- 
archy should push details about a 
class’s structure as low as possible in 
the hierarchy. Subclasses can over- 
ride inherited behavior, but not 
structure, so it is better to delay 
design decisions about structure as 
long as possible. 

A responsibility is a statement of 
intent. It is general; it says nothing of 
how a responsibility is supported- 
details of structure or algorithms. If  
a superclass supports its respon- 
sibilities in the most generic way 
possible, there will not be any im- 
plementation details to impede a 
creation of a new subclass that wishes 
to inherit its responsibilities. Each 
subclass is free to implement the 
responsibilities in a way most ap- 
propriate for it. 

Abstract classes define default im- 
plementations for some methods in 
order to make it easier to create 
subclasses. If  they must depend on 
implementation details, those details 
should be accessed by sending a 
message to the object itself [58]. 
Messages sent to the object can eas- 
ily be overridden by subclasses, 
allowing subclasses to provide a map- 
ping from the abstract implemen- 
tation assumed by the superclass to 
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the concrete implementation they 
support. 

For example, consider an abstract 
class Point with two concrete 
subclasses, Cartesian Point and 
Polar Point. The addition of two 
points can be abstractly defined in 
terms of adding the x and y  coor- 
dinates. If  the x andy coordinates are 
accessed through a message send, 
each subclass can then supply its own 
implementation of these messages 
based on its internal representation. 

Otalect-Oriented 
SOWWare EngSneering 
For the past 10 years, the group at 
Senter for Industriforskning (SI) has 
been developing highly interactive, 
flexible and personalized work en- 
vironments for executives and other 
professionals in public service, com- 
merce and industry. The power of 
object orientation has been critical to 
their success. All their efforts in soft- 
ware engineering have been aimed at 
providing improved leverage for their 
development efforts. 

When the group started develop- 
ment work in 1983, there was a con- 
flict between functional specifications 
(which clearly indicated that Small- 
talk-80 was the preferred devel- 
opment environment), and the 
requirements for reliability and 
maintainability (which clearly in- 
dicated a well-proven software engi- 
neering environment based on a 
traditional programming language). 
The group at SI opted for the 
Smalltalk- environment because of 
its object orientation, development 
environment and rich class library. 
Over the years they have developed 
a personal work environment based 
on Smalltalk to augment the initial 
system. 

This personal work environment 
consists of a Smalltalk image con- 
taining a kernel module and a num- 
ber of optional function modules that 
can be configured to suit an in- 
dividual user’s requirements. There 
are also a number of background 
services such as a persistent object 
store, that are mainly written in C. 
There are approximately 100,000 
lines of Smalltalk- source code. 
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The group at SI believes that the 
key to program quality is simplicity: 
simple models, simple designs, sim- 
ple code. They also believe that if a 
problem is really understood, a sim- 
ple solution can be found. Their 
strategy has been to develop methods 
and tools that first permit the model- 
ing of small subproblems until they 
are fully understood, then to com- 
bine the small models into larger 
ones in a controlled manner. 

They term their method 
OORASS, Object-Oriented Role 
Analysis, Synthesis and Structuring, 
because of its three critical operations 
[41]. These operations are based on 
the encapsulation, inheritance and 
dynamic binding properties of object 
orientation. Analysis describes sub- 
problems by encapsulating behavior 
in the objects of an object model, 
which is termed a Role Model. Syn- 
thesis defines composite objects by 
inheriting behavior from several 
simpler objects. Structure Specifica- 
tion prescribes how objects can be 
bound together in an actual instance 
of a system. 

The goal of the OORASS research 
is to help people create an organized 
structure of collaborating objects and 
to represent such a structure in a 
computer. They believe that three 
distinct abstractions of objects are 
needed if the full benefits of object 
orientation are to be attained: the 
how, the what, and the why of objects. 
The hole, is the class of the object, 
describing its internal implementa- 
tion. The what is the type of the ob- 
ject, describing its external behavior. 
The U&J is a new concept call Role, 
which represents the task of the ob- 
ject within the organized structure of 
objects. 

The method developed at SI con- 
sists of five main parts. Each part 
represents a systems development 
phase as well as part of the total 
description of the application under 
development. Objects are at the 
center of attention at all time; each 
part provides some information 
about the application objects or their 
structures. 

The Role Model part separates the 
problem domain into more or less 

overlapping areas of concern. Each such 
area is modeled as a structure of in- 
teracting objects. Each object is 
abstracted into a Role according to its 
purpose in the Role Model structure. 

The Object S’ecification part in- 
tegrates the individual Role Models 
by letting a single composite object play 
different Roles in different models. 

The Class Implementation part pro- 
vides programs for all required 
objects. 

The Structure S’ec(fication provides 
a kind of grammar or Meta Model that 
describes the possible collaborations 
between objects, (i.e. how they can be 
configured). This process is like 
multi-dimensional dominoes, where 
any piece may be attached to any 
other piece if they both have free and 
compatible interfaces where they can 
be joined. 

Finally, the Object Instantiation part 
creates objects and interconnects 
them according to the prescriptions 
given in the Meta Model, and as in- 
stances of classes programmed in the 
Class Implementation part. 

Role ModelInS 

Modeling consists of two subparts: 
analysis for modeling subproblems, 
and synthesis for joining small 
models into larger ones. The task in 
object-oriented design is to describe 
patterns of interactions and to assign 
responsibility to individual objects in 
such a way that the total system of 
objects is as simple as possible. An 
object that is to play a certain Role in 
an object structure must understand 
certain messages (e.g., have certain 
behavior). 

Analysis: Simple Role 
Modeling 
There is a many-to-many correspon- 
dence between Role and Behavior. 
For example, consider a document 
modeled as a structure of objects. 
Suppose that the documents tree has 
a document object as its root, and a 
number of sub-objects as shown in 
Figure 5. 

This example has nine different 
Roles, but several objects may be 
given identical behavior. There are 
only three kinds of object behaviors: 



a general TreeObject that can play 
the Roles of document, title page, section, 
andfigure; a TextObject that can play 
the Roles of title, authol; paragraph, and 
caption, and a PictureObject that can 
play the Role ofpicture. Thus, con- 
siderable code reuse has been 
achieved by separating the concepts 
of Role and Behavior. Furthermore, 
programs can be written to imple- 
ment a great variety of document 
structures: many different Role 
Models may be constructed from a 
toolkit containing a limited selection 
of three different object behaviors. 

Each Role in a Role Model is 
given a name. Its responsibilities are 
described to determine which other 
Roles it needs to know about and 
what messages it sends to these col- 
laborators. While during execution 
the origin of a certain message is ir- 
relevant to an object, the right to send 
a certain message is a very important 
part of the privileges that are assigned 
to objects in design. 

The diagrams used for Role 
Models are very simple. Computer- 
based tools support drawing Role 
Model diagrams, and more detailed 
information is always immediately 
available to the designer through a 
direct manipulation tool interface. 

For example, the document Role 
Model describes what is meant by a 
document in object-oriented terms. 
Objects that serve the same purpose 
in the model, for example section ob- 
jects, have been abstracted into 
Roles. Attributes to the symbols in 
the diagram give further informa- 
tion, such as a description of the 
responsibility of the objects for each 
Role, and details about messages that 
objects may send to collaborators. 

Synthesis: Composite ROIe 
Modellna 

Typical designs are usually too large 
to be comprehended as a whole. By 
subdividing into subareas of con- 
cern, and creating Role Models for 
each subarea, a problem can be de- 
composed. This reduces modeling to 
manageable proportions, but creates 
a new problem of integrating smaller 
models into a model of the entire 
system. 

This problem can be simply solved 
in the few cases where the problem 
can be considered hierarchical. What 
appears as one object on the higher 
level is then represented by its own 
Role Model on a lower level. 

However, problems are usually 
more complex. If  one model is not 
just detailing the internals of a single 
object in another model, a Role Syn- 
thesis construction mechanism is 
needed to integrate models. For ex- 
ample, given a number of Role 
Models A,B ,... with Roles Al, A2, 
A3 ,..., B1, B2, B3 ,..., a Composite Role 
AnBm.. can be created such that the 
newly created Role object may 
simultaneously play Role n from 
Model A, Role m from Model B, and 
so on. 

Thus a many-to-many correspon- 
dence between Role and Object ex- 
ists, because an object may play 
several different Roles, and a given 
Role may be played by different ob- 
jects. For example, a person object 

may play the Role of a materials pro- 
vider in a manufacturing Role Model, 
and the Role of a buyer in a materials 
purchasing Role model. The person 
object then acts as an integrator be- 
tween the two Role models, using 
knowledge about the market in its 
materials provider Role, and knowledge 
about manufacturing in its buyer 
Role. Another example is illustrated 
in Figure 6. 

Role Synthesis makes it possible to 
reuse Role Models. Consider the 
document example. The document 
Role could inherit properties of the 
parent Role in the Tree Model, the 
titlepage, section andfigure Roles could 
inherit both parent and child, and the 
leaf nodes title, authoq paragraph, picture 
and caption could inherit the child 
Role. 

The advantages of Role Synthesis 
are threefold. First, a tree structure 
does not need to be reinvented every 
time one is needed. Second, if tree 
structures need additional properties 

F-3 document 

FIGURE 5. A Role Model diagram for the document enample. 
A Role is denoted by a large circle, collaborators are joined bv Ilnes, the Small ClrtleS at the 
line ends denote the cardlnallty: A double circle denotes that for one of the near Role there 
are none, one or many of the far Role; a single circle denotes that for one near Role there Is 
exactly one far Role. A symbol inslde a small circle (not shown in the figure) denotes the 
messages that the near Role may send to the far Role, no symbol means that the near Role 
does not send any messages to the far Role. In the computer-based tool, any symbol may be 
selected to obtain a new window with further Information. 
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then it can be added in only one 
place, namely the Role Model of a 
primitive tree. Third, classes for the 
parent and child Roles could be im- 
plemented; the document objects 
and all other used of tree structures 
could then be programmed as sub- 
classes of these. This provides a 
mechanism for describing a class 
library on the abstraction level of 
modeling and design. 

object Specl~lcatlon 

Role Modeling studies objects and 
their interactions. To create an Ob- 
ject Specification, the focus changes 
from the overall structure of objects 
to a single object and its immediate 
collaborators. Again, synthesis may 

r 

Synthesized 
Role Model 
of general 

tree 

FIGURE 6. The gaM3l node object of 
a tree structure can be synthesized as a 
Role that can Play both the parent Role and 
the CM/d Role. 
In the left part of this example, we create a 
Role Model modeling a primitive, two-level 
tree: One parent Role collaborates with any 
number of ch//UROles. We can now syn- 
thesize a Role Model for a general tree bv 
letting all lntermedlate tree nodes Inherit 
behavior both from the pafent Role and the 
cMU Role. Intermediate Roles. nodes, mav 
therefore play parent Roles vii-a+fls iheli 
children. and ch//d Roles vls-a-vls their 
parentis shown In the right part of the 
figure. 
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be used to create specifications for 
objects that may play multiple Roles. 

For example, consider the para- 
graph Role in a document. There 
could be two very different kinds of 
objects that could fill this Role. A 
PlainText could contain text local to 
the current document. A Database- 
Text could represent the latest version 
of some text record existing in a data- 
base. Every time the document was 
printed or inspected, the latest ver- 
sion of this record would be inserted. 
And, if a user were allowed to edit 
such a text, the database should im- 
mediately be updated. 

A DatabaseText object would 
need to play some Role such as data- 
base record in a Role Model describing 
a database system. It would, of 
course, also have to play the Role of 
paragraph in the document Role Model. 
These two Role Models could be 
combined into one, but this would 
create unnecessary complexity. 

Instead, a better solution is to 
specify DatabaseText as an object 
that can both play the Role ofparu- 
graph in the document Role Model and 
database record in a database Role 
Model. This specification defines the 
object by describing all the Roles it 
must be able to play and all its in- 
teraction with its collaborators. This 
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FIGURE 7. An Object Speclflcatlon. 
An object Speclflcatlon describes all the 
Roles an object must play and thus the 
combined set of Interactions with all col- 
laborators. The object Is shown In the 
center, Its collaborators are shown as shaded 
circles around It. In this case, the Role Is a 
paragraph of a sectlon, the CM/d of a 
parent, and a Iecofdof a database. 

is illustrated in Figure 7, where the 
object being specified is shown in the 
center of the diagram with its col- 
laborators around it. 

Interdependencies between Role 
Models must also be considered. In 
the DataBaseText example, mes- 
sages in the document domain hav- 
ing to do with getting and putting 
text will presumably have to perform 
some database operations. Con- 
versely, if the database content is 
changed, some action should be 
taken in the document domain to 
reflect the new values. Such in- 
terdependencies are recorded in rele- 
vant message descriptions. 

Class lmplementatlon 

The word class, in OORASS, is used 
in a very restricted sense: a class is a 
program that implements a certain 
object specification. The class is the 
only place where the internal struc- 
ture of an object is seen. Just as a 
class can implement objects that play 
several roles, many different classes 
can implement objects that play a 
particular role (i.e., there is a many- 
to-one relationship between classes 
and roles). The object being specified 
in an Object Specification is often 
synthesized as a composite of several 
Roles. This inheritance structure 
gives important hints as to a possible 
class hierarchy in a program. Specili- 
tally, reusable Role Models should 
be implemented as reusable class 
libraries. 

Structure Speclileatlon 

The Object Specification part defines 
the external properties of an object in 
sufficient detail to decide whether ob- 
jects should be connected. Any object 
that satisfies the assumptions an ob- 
ject makes about a collaborator may 
be connected to that object and play 
the Role of its collaborator. 

Given a reasonably rich and 
generic set of Object Specifications 
with at least one class implemented 
for each, clearly a variety of correct 
object structures can be built. Only 
some will be meaningful in the user 
domain. For example, in our docu- 
ment, the programs will tolerate title 
paga that come between two sections in 
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the middle of the document. How- 
ever, this is not typically what the 
user expects. 

Therefore, the Meta Model de- 
scribes the subset of workable object 
combinations that have meaningful 
structures in the user domain. This 
description is used during Object In- 
stantiation to control the generation 
of an actual object structure [36]. 
The Meta Model can contain other 
information, such as number restric- 
tions, parameters to initialize the at- 
tributes of an instance to adapt it to 
play a certain Role, access restric- 
tions, default display and formatting 
information, in addition to pure 
structural information. 

System Instantlatlon 
The System Instantiation part 
creates an actual object structure by 
matching classes defined in the Ob- 
ject Implementation with the pre- 
scriptions of the Meta Model. This is 
typically a dynamic process where 
new objects are being created and 
unused ones are garbage collected 
throughout the lifetime of the 
application. 

An object may collaborate with 
any other object that has the desired 
behavior regardless of implementa- 
tion. For maximum flexibility, the 
binding of class to collaborator is 
postponed until the moment that 
new objects are actually created. The 
program needing the new object 
knows the name of its Class Specifi- 
cation, a run-time mechanism 
matches this name to its preferred 
implementation and creates an in- 
stance of the corresponding class. 
This is similar to the LaLonde’s use 
of exemplars [26]. 

Further Work 

The OORASS method has been 
evolving over several years. Suc- 
cessful programs have been 
developed exploiting the class Im- 
plementation, Structure Specifica- 
tion and Object Instantiation tools. 
A number of different systems have 
been generated from an identical 
program base by defining different 
Meta Models. New capabilities have 
been added by just programming the 
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new classes and including them in a 
Meta Model. 

Currently, a group consisting of 
people from SI, Taskon A/S and the 
University of Oslo is developing a 
method for systems analysis and 
model description, employing mes- 
sage scenarios and formal protocol 
definitions as an extension to the 
Role Models. They also are integrat- 
ing their CASE tools to provide a 
seamless model of all information. 
This will also include an extension of 
their literate programming facility, so 
that formal and informal informa- 
tion can be intermixed [42]. They 
hope that their method will provide 
a high-level model description of 
reusable classes that could become 
the technical foundation for a mar- 
ketplace of reusable class libraries. 

Frameworks-Reusable 
Designs 
One of the main advantages of 
object-oriented programming is that 
it supports software reuse. It is easy 
to see how object-oriented program- 
ming makes program components 
more reusable, but in the long run 
the reuse of design is probably more 
important than the reuse of code. 
Although abstract classes provide a 
way to express the design of a class, 
classes are too fine-grained. A frame- 
work is a collection of abstract and 
concrete classes and the interfaces be- 
tween them, and is the design for a 
subsystem. Abstract classes are fairly 
well understood, but much less has 
been written about frameworks, and 
there is much less of a consensus on 
them. 

The first widely used framework 
was Model/View/Controller, the 
Smalltalk- user interface frame- 
work [25]. It showed that object- 
oriented programming was ideally 
suited for implementing graphical 
user interfaces. MacApp is a later 
user interface framework designed 
specifically for implementing Macin- 
tosh applications [46]. It is actually a 
framework for all aspects of Macin- 
tosh applications, such as printing 
and storing documents on the disk. 
Recently there have been a number 
of user interface frameworks from 
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universities, such as the Andrew 
Toolkit from Carnegie Mellon Uni- 
versity [38], Interviews by Mark 
Linton at Stanford [32, 541 and 
ET+ + from the University of Zurich 
[55, 561. Each of these frameworks 
improves the state of the art in user 
interface framework design in some 
way, building on the successes and 
lessons of earlier systems. 

Frameworks are not limited to 
user interfaces, but can be applied to 
any area of software design. They are 
one of the main reasons that object- 
oriented programming has such as a 
good reputation for promoting reuse. 
However, frameworks are different 
from simple class libraries, and re- 
quire more work to design. 

Frameworks 

The idea and terminology of frame- 
works were developed at Xerox 
PARC by the Smalltalk group. Peter 
Deutsch describes frameworks in [ll] 
(and less thoroughly in [lo]). He em- 
phasizes that the most important 
aspect of a framework that is reused 
is the interface or specification of the 
components. Although frameworks 
reuse implementation as well, reuse 
of interface design and functional 
factoring is more important because 
they constitute the key intellectual 
content of software and are far more 
difficult to create or re-create than 
code. This is the key insight behind 
frameworks. 

Just as an abstract class is the de- 
sign of a concrete class, a framework 
is the design of a subsystem. It con- 
sists of a number of abstract and con- 
crete classes. (Deutsch uses the term 
“single class frameworks” and 
“multiclass frameworks”, but we in- 
stead say “abstract class” and 
“framework”). Part of the definition 
of each abstract class is its respon- 
sibilities. In addition, a framework 
consists of the collaborations between 
the objects in its abstract classes. 

Like a subsystem, a framework is 
a mixture of abstract and concrete 
classes. It differs from a subsystem by 
being designed to be refined. It can 
be refined by changing the configu- 
ration of its components or by creat- 
ing new kinds of components (i.e., 
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new subclasses of existing classes). A 
mature framework will have a large 
class library of concrete subclasses of 
each abstract class, so that most of the 
time an application can be “plugged 
together” from existing components. 
Even when new subclasses are 
needed, they are easy to produce be- 
cause the abstract superclasses pro- 
vide their design and much of their 
code. 

For example, the user interface 
subsystem of a Smalltalk- applica- 
tion is almost always produced with 
the Model/View/Controller user in- 
terface framework. It will be built by 
connecting views and controllers to- 
gether and parameterizing them 
with menus, messages to send on 
particular events, etc. Even when an 

. . 
application requires one or two new 
user interface classes, most of the 
classes in the user interface will come 
from the standard class library. 

Brad Cox has likened reuse in an 
object-oriented system to integrated 
circuits and has advocated the use 
“software ICs,” which are black-box 
components that can be used in a 
variety of contexts [7]. However, 
designing a framework is more like 
designing a family of chips or a logic 
family. The individual components 
are less important than the standard 
interfaces they share, and designing 
the interfaces is harder than design- 
ing individual components. 

Most frameworks will be domain 
dependent. Although most of the 
publicized frameworks focus on user 
interfaces, frameworks can be used 
for much more than just user inter- 
faces. User interface frameworks are 
popular in part because they are 
relatively domain-independent, are 
useful to most programmers, and 
correspond to a traditional computer 
science area of specialization. How- 
ever, most subsystems will be appli- 
cation-dependent, so the frameworks 
that generate them will be too. Good 
examples are frameworks for VLSI 
routing algorithms [16], or for con- 
trolling real-time psychophysiology 
experiments [14]. Thus, most frame- 
works will be of interest only to appli- 
cation programmers working in 2 
particular area. 

There are several projects at the 
University of Illinois at Urbana- 
Champaign to design frameworks. 
The TS optimizing compiler for 
Smalltalk has a framework for code 
generation and optimization [23]. 
Code optimizations are never com- 
pletely machine-independent; a 
framework for code optimization al- 
lows the compiler designer to easily 
build a customized optimization 
phase. The FOIBLE framework for 
visual programming environments 
provides a customizable graphics 
editor to which a visual language 
designer can add an interpreter, 
resulting in a visual programming 
language [21]. 

Choices is an object-oriented op- 
erating system written in C + + at the 
University of Illinois under the direc- 
tion of Roy Campbell. It is more than 
just an operating system; it is an 
operating system framework. It con- 
sists of interlocking frameworks for 
file systems [33], virtual memory 
[44], communication [61], and pro- 
cess scheduling [43]. The file system 
framework shown in Figure 8, which 

was developed primarily by Peter 
Madany, has been used to imple- 
ment a number of different file 
systems, including BSD and System 
V, MSDOS, a log-based file system 
an object store, and archive files. 

The Inner File Svriem 
Framework 

One of the central classes of the file 
system framework in Choices is 
MemoryObject. A MemoryObject 
is a sequence of identically sized 
blocks. It is responsible for reading 
and writing its contents one or more 
blocks at a time. It also is responsible 
for maintaining the number of blocks 
that it contains. Thus, the key opera- 
tions provided by MemoryObjects 
are read, write, and size. Many parts of 
a file system are MemoryObjects, 
such as files and disks. MemoryOb- 
jects are the part of the file system 
framework that is most used by the 
rest of the operating system. In par- 
ticular, the virtual memory system 
also uses MemoryObjects, so they 
act as an interface between the file 
system and the virtual memory 

Stream-based 
file system 
framework 

PICURE 8. The Chokes file system framework. 
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system. Files are stored on disks, 
but both files and disks are 
MemoryObjects. 

ObjectContainers keep track of 
partitioning a large MemoryObject 
into a set of smaller MemoryOb- 
jects, (i.e., a disk into a set of files). 
For example, the Unix i-node table is 
an ObjectContainer. ObjectCon- 
tainers can create new MemoryOb- 
jects, delete old ones, and can return 
the i-th MemoryObject that it 
stores. Thus, its operations are create, 
delete, and open. 

A BlockAllocator manages the 
free blocks of a MemoryObject that 
is partitioned by an ObjectCon- 
tainer. Of course, some MemoryOb- 
jects have fixed partitions and so 
have no free blocks, but most file 
systems allow files to be created and 
deleted dynamically. Files use alloca- 
tors to acquire, and release blocks of 
the MemoryObject on which they 
are stored. The only operations 
defined by BlockAllocator are 
allocate and free. 

MemoryObject, ObjectContain- 
ers, and BlockAllocators provide 
the foundation of any file system. 
Some of the components of a file 
system will be reused unchanged 
from the class library. For example, 
a disk can be partitioned by an Ob- 
jectcontainer into a fixed number 
of fuced-sized file systems. Others are 
subclasses of standard abstract 
classes. For example, a Unix System 
V fde system will consist of a subclass 
of ObjectContainer (SysVCon- 
tainer) to implement the System V 
i-node table, a subclass of Memory- 
Object (SysVlnode) to implement 
System V i-nodes, and a subclass of 
BlockAllocator to implement the 
System V free list. 

Since a System V file system has a 
subclass for every abstract compo- 
nent of the framework, it might seem 
that the framework is not helping 
very much. However, not only is it 
very helpful for the designer to start 
with a high-level design that de- 
scribes the components and their in- 
terfaces, but some of the concrete 
classes inherit a lot of code from their 
abstract superclasses. In particular, 
SVlDContainer inherits operations 
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from ObjectContainer to manage a 
table of open MemoryObjects and 
from its superclass UnixContainer 
to read and write disk inodes, while 
SVIDlnode inherits most of its oper- 
ations from Unixlnode. 

Outer File System 

Framework 

MemoryObject, ObjectContainer, 
and BlockAllocator are only the 
core of the file system framework. 
There is another layer that represents 
an application program’s view of the 
file system. An ObjectDictionary 
(e.g., directory) converts a logical file 
name into the index of the file in an 
ObjectContainer. Its operations are 
open, create, and delete. A Directory dif- 
fers from an ObjectContainer 
because a MemoryObject can be in 
only one ObjectContainer, but can 
be in many directories. Directories 
are usually associated with a single 
ObjectContainer, and are usually 
stored on the same MemoryObject 
that the ObjectContainer partitions. 

There are currently two separate 
but compatible user views of files. 
FileStream provides a Unix-like in- 
terface to a file, with a current posi- 
tion and a seek operation, in addition 
to a read and a write. There is also a 
PersistentObject class that supports 

the transparent storage and retrieval 
of objects from the disk. Like File- 
Streams, PersistentObjects are 
based on MemoryObjects. They 
differ from FileStreams in that they 
can refer directly to other Persistent- 
Objects. 

Other parts of the file system in- 
clude MountTable, SymbolicLink, 
Filesystemlnterface (which keeps 
track of a current directory), and an 
authentication system. 

This layering of frameworks is 
common, and is similar to other ways 
that software designs are layered. 
Some of the classes in the file system 
framework are used in other parts of 
Choices. MemoryObject is used by 
the virtual memory system, while 
Filesystemlnterface and the user 
views of files such as FileStream and 
PersistentObject are used by ap- 
plication programs. BlockAlloca- 
tors and ObjectContainers are 
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usually private. The user of a file 
system does not need to know about 
the private classes, but the designer 
of a new type of file system does. 

The Choices file system has gone 
through many versions, and each 
version is more general and reusable 
than the previous ones. The core 
classes have been stable for some 
time, while the outer classes are 
newer and still changing. This is 
typical of reusable designs. Reusing 
the early versions points out design 
weaknesses that must then be cor- 
rected. A framework’s designer can 
be confident of its reusability only 
after it has been successfully reused 
several times. 

In the fall of 1987, before the file 
system framework had been de- 
signed, a dozen students in an oper- 
ating system course built a System V 
compatible We system for Choices. 
In the fall of 1989 two teams: a one- 
person team, and a two-person team, 
each built a log-based file system for 
Choices using the framework. The 
System V file system specification 
was simpler and much better docu- 
mented than the log-based file sys- 
tem, but the students using the 
framework were more successful 
than the earlier students who did 
not use it. This experience not only 
increased confidence in the reusabil- 
ity of the file system framework, it 
illustrates why frameworks are so 
important. 

Research on FrameWOrkS 

Designing a framework is itself re- 
search. The designer must under- 
stand the possible design decisions 
and must organize them in a set of 
classes related by the client/server, 
whole/part, and subclass/superclass 
relationships. Thus, the designer is 
developing a theory of the problem 
domain and expressing it with an 
object-oriented design. 

There are three main research 
areas related to frameworks. The first 
is designing frameworks: what are 
the characteristics of a good frame- 
work and how is one designed? The 
second is using frameworks: how 
does one configure a particular appli- 
cation based on a framework. The 
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third is describing frameworks: what 
notation is needed, other than that 
applicable to object-oriented design 
in general? 

Deslmnlng FrOmeWOrkS 

Most people realize they need a 
framework when they notice similar- 
ities in existing applications. These 
do not have to be object-oriented sys- 
tems; designers with extensive expe- 
rience in an application domain often 
can tell which frameworks would be 
useful for their applications. Sub- 
systems also may evolve into frame- 
works as they are reused. Designing 
a good framework is more than just 
extracting the abstract classes from a 
subsystem. A subsystem only has to 
work for one application, but a 
framework must work for many ap- 
plications. Thus, a framework is a 
generalization of the subsystems that 
can be built from it. 

Good frameworks are usually the 
result of many design iterations and 
a lot of hard work. Designing a 
framework is like developing a the- 
ory. The theory is tested by trying to 
reuse the framework. Unsuccessful 
experiments require a change in the 
theory. Lack of generality in a frame- 
work shows up when it is used to 
build applications, so its weaknesses 
cannot be found until after it is de- 
signed and reused. Thus, iteration 
seems necessary. 

Since iteration is necessary, it 
should be performed as early in the 
design life cycle as possible. Many 
iterations can be done on paper be- 
fore any code is entered in the com- 
puter. However, the proof of the 
adequacy of a design is whether it can 
be implemented well. 

Changes made to a framework 
during its design tend to fall into cer- 
tain patterns [22]. Responsibilities 
are moved from one class to another. 
Responsibilities (or even classes) are 
broken into smaller components, so 
that one part can be changed inde- 
pendently of another part. Some- 
times separately designed classes are 
given a common superclass, which is 
usually followed by migrating func- 
tionality up into the new superclass 
and preceded by renaming opera- 
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tions on the different classes so that 
they will share more of their inter- 
face. These changes are an important 
part of the process of designing 
frameworks. 

The Software Refactory project 
(William Opdyke and Ralph John- 
son) at the University of Illinois is 
developing tools to manage changes 
that occur during design iteration 
[37]. Refactorings are the changes to 
frameworks that do not add func- 
tionality, but instead redistribute and 
reorganize it. Refactorings are time- 
consuming and error-prone when 
done by hand, but the Software Re- 
factory project is designing tools to 
automate them. Thus, a program- 
mer will just perform the “break class 
into components” operation and 
both the class and its clients will 
be modified. This would make itera- 
tion much easier and would let the 
designer think about changes to a 
design at a high level. Moreover, 
changes to a framework can be prop- 
agated to the applications that use it. 
The result is that changes to a frame- 
work will cost less and have a larger 
benefit. 

Using Frameworks 

Using a framework is typically com- 
prised of two activities: 

l defining any new classes that are 
needed, and 

l configuring a set of objects by pro- 
viding parameters to each object 
and connecting them. 

Ideally, no new classes are needed. 
Frameworks are seldom ideal; most 

. 
applications must define new classes 
within the framework. However, 
even when new classes are needed, 
most of the work of using a frame- 
work is “plugging” or configuring 
objects to,gether. 

Programs that configure a set of 
objects are very stylized. First, a set 
of objects is created and each object 
is initialized. Then, operations are 
performed on the objects to connect 
them. These programs are so similar 
to each other that it is natural to think 
that they can be written automati- 
cally. Several of the user interface 
frameworks have tools that will auto- 

matically write the code to configure 
a user interface. Glazier was devel- 
oped at Tektronix to build subsys- 
tems based on ModellViewlCon- 
troller [l]. The NeXT Interface 
Builder is a much more powerful tool 
that builds user interface subsystems 
from the NeXT user interface 
framework [53]. 

Although specialized tools for con- 
figuring applications for particular 
frameworks are valuable, what is 
really needed are tools that can con- 
figure applications for any frame- 
work. Scripting languages, which are 
compact notations for constructing 
applications from existing software 
components, are a proposed solution 
to the problem. An object-oriented 
scripting language can serve the 
same role for a framework that a shell 
or a job control language can serve in 
a conventional environment. Two 
object-oriented scripting languages 
have been developed at the Univer- 
sity of Geneva, the Visual Scripting 
Tool [24] and TEMPO [8]. TEMPO 
is specialized for applications that 
deal with concurrent activities and 
temporal relationships between 
them. The Visual Scripting Tool is a 
visual programming language (i.e., it 
is based on pictures instead of text). 

DeSCrllslng Frameworks 

Since most object-oriented program- 
ming languages provide no direct 
support for either abstract classes or 
subsystems, it is not surprising that 
there is no good notation for describ- 
ing frameworks. Frameworks are 
more than just the classes that they 
contain, but include instructions for 
making subclasses and for configur- 
ing applications from the frame- 
works. The ITHACA project is an 
Esprit II project involving a number 
of European companies, research 
organizations, and universities to 
design and build an integrated ap- 
plication development and support 
environment based on the object- 
oriented programming approach 
[40]. One of the goals of the project 
is a formalization of frameworks. 

The goal of the ITHACA project 
is to reduce the long-term costs of ap- 
plication development for standard 
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applications from selected applica- 
tion domains. Besides a kernel of 
object-oriented languages and com- 
pilers, it will have an application 
development environment consisting 
of a set of programming tools and an 
object-oriented software information 
base. Only the software information 
base is tailored to a particular ap- 
plication domain. Initially there are 
four target domains: public admin- 
istration, office automation, financial 
applications, and chemistry. 

A key idea in the ITHACA proj- 
ect is the generic application, which 
is similar to what we have called a 
framework. The software information 
base contains generic applications 
and other software components, as 
well. Users of the ITHACA environ- 
ment will have two kinds of roles: that 
of the application engineer who tailors 
an ITHACA environment to an ap- 
plication domain, and that of the 
application developer who generates 
specific applications using the com- 
ponents in the information base 
created by an application engineer. 
The application engineer is con- 
cerned with all phases of software 
development from requirements 
analysis to coding and validation, but 
does so for generic applications 
rather than specific ones. The appli- 
cation developer starts with a generic 
application and configures the final 
application from the available soft- 
ware components to meet applica- 
tion-specific requirements. 

The software information base is 
more than just a class library because 
it contains and organizes the applica- 
tion domain model, requirements, 
specifications, software components, 
and documentation. The primary 
mechanism for organizing the soft- 
ware information base is the frame, 

which collects and organizes all infor- 
mation pertaining to an application, 
whether generic or specific. Generic 
applications are also specified with 
frames. There is a hierarchy of 
frames, from generic to specific. An 
applications developer builds frames 
for specific applications by selecting 
a generic application frame and 
filling in the missing information, 
such as new requirements and the 

resulting design choices. 
An important part of the expected 

life cycle is to reevaluate generic ap- 
plication frames to improve their 
reusability. This might require that 
new software components be added 
to the software information base. 
This corresponds closely to the way 
that frameworks tend to be designed. 
In fact, generic applications are quite 
similar to frameworks, with the pri- 
mary differences being that the 
ITHACA project is trying to explic- 
itly capture requirements and spec- 
ifications, while these typically are 
described informally in the docu- 
mentation of most frameworks. The 
iterative nature of object-oriented 
design is addressed in work on recog- 
nizing class hierarchies, leading to 
algorithms that automatically re- 
structure a class hierarchy upon in- 
troduction of one or more classes [5]. 

Demeter 
The goal of the Demeter project, led 
by Karl Lieberherr at Northeastern 
University, is to develop CASE tools 
and their theoretical foundations to 
improve the productivity of object- 
oriented designers and programmers 
[31]. One of the key ideas is the class 
dictionary, which is similar to a 
grammar. Class dictionaries describe 
the part-of and inheritance relation- 
ships between classes. They can be 
interpreted as class definitions, type 
definitions, or grammars. Different 
tools within the Demeter system use 
different interpretations of class dic- 
tionaries to automatically construct 
various kinds of programs, such as 
class definitions, customized print 
routines for each class, and parsers 
that can read object descriptions 
from a text fde and convert them into 
objects. 

A class dictionary defines the 
structure of a class; a class module 
adds interface definitions. Class dic- 
tionaries are language independent, 
but method definitions in class 
modules are written in particular 
language. Demeter automatically 
produces programs from class mod- 
ules. It creates the class definitions, 
printers and parsers and adds the 
code in the class modules to them. 

Demeter currently produces either 
Flavors or C++ programs. 

Class Dletlonarler 

Demeter classes fall into three cate- 
gories: construction classes; repeti- 
tion classes; and alternation classes. 
A class dictionary can be parame- 
trized by other classes and can inherit 
from other classes. For example: 

CLASS Basket HAS PARTS 
content: Sequence(Fruit) 
weight: Number 

END CLASS Basket. 

defines a construction class named 
Basket with components content and 
weight. 

An example of a repetition class is 
class Sequence. Sequence has a class 
parameter; S. A Sequence contains 
zero or more parts of the specified 
class: 

CLASS Sequence(S) IS LIST 
REPEAT {S} 

END CLASS Sequence. 

An example of an alternation class 
is class Fruit: 

CLASS Fruit IS EITHER 
Apple OR Orange 
COMMON PARTS 
weight: Number 
HAS INTERFACE 

VIRTUAL cost0 RETURNS 
Number 

END CLASS Fruit. 

where Apple and Orange are prob- 
ably simple construction classes. An 
alternation class is always an abstract 
class. Thus, there is no need to gen- 
erate functions to construct objects 
for it. For example, in the definition 
of cost, the keyword VIRTUAL 
means that cost may be redefined in 
an Apple or Orange. 

SoUware EvOlutlOn 

Demeter takes advantage of its 
grammar-based foundation to pro- 
vide tools that help plan the evolution 
of software [29]. Class modules are 
usually implemented according to a 
growth plan that is determined by a 
class dictionary. A growth plan for a 
class dictionary D is a sequence of in- 
creasingly larger subclass dic- 
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tionaries, starting with a smallest 
subclass dictionary of D. 

Each implementation phase com- 
pletes the method definitions for 
some subset of the classes specified in 
the class module and provides a test 
suite for debugging the code. The 
order of the phases and the classes in- 
volved in a phase are chosen in a way 
that each phase is an extension of the 
previous one. Each phase can suc- 
cessfully execute test cases for earlier 
phases. Method definitions are 
added incrementally until the ap- 
plication is completely implemented. 
Thus, a growth plan provides for 
many small steps in the development 
process, and each step can run all the 
tests of the first. 

Another way to think of this ap- 
proach is that each phase cor- 
responds to an increasingly detailed 
prototype. At each phase, the pro- 
totype works on at least some of the 
objects. Later phases should work on 
all the objects that earlier phases 
worked on. Lieberherr has shown 
that the growth plan problem is 
NPhard, but has also developed 
useful heuristics for it that are 
satisfactory in practice [28]. 

Construetlng Classes 
AutomatIcally 

One of the advantages of the similar- 
ity of grammars and class diction- 
aries is that Demeter can infer class 
dictionaries from object descriptions 
[27]. Currently Demeter can abstract 
recursive class dictionaries from ob- 
ject descriptions. This problem is in 
general NP-hard, but for the special 
case of single-inheritance class dic- 
tionaries Lieberherr’s group has 
developed an efficient algorithm. 
Objects must be hierarchical and 
cannot have cycles. For example, a 
particular basket of fruit might be: 

<Basket > content: (<Apple > 
weight: 12, <Orange> weight: 4) 

weight: 16. 

The task of constructing class dic- 
tionaries then becomes finding a 
grammar that accepts the object 
descriptions. The class dictionary 
must accept only object descriptions 
that are similar to the input set (i.e., 

the grammar that accepts every ob- 
ject description is not useful). More- 
over, the class dictionary should be as 
small as possible, which prevents it 
from simply listing the original object 
descriptions. 

The main motivation for con- 
structing classes from examples is 
that specific examples are easier to 
invent than general classes. In the 
same way, parametrized classes are 
harder to think about than classes 
without class parameters. The 
Demeter system can automatically 
build parametrized classes from non- 
parametrized ones. Often the need 
for parameterized classes is not ob- 
vious until after the classes have been 
written, so tools to automatically 
parametrize classes are valuable for 
both design and maintenance. 

The Law # Demeter 

A common problem in object- 
oriented design is collaboration 
graphs that are too complex, that is, 
too strong of a coupling between 
classes. The Law of Demeter is a rule 
of good programming style that 
simplifies collaboration graphs and 
minimizes coupling between classes 
[30, 311. Stated briefly, the Law of 
Demeter says that one should not 
retrieve a part of an object and then 
perform an operation on that part, 
but should instead perform the oper- 
ation on the original object, which 
can implement the operation by dele- 
gating it to the part. The result of 
following the Law of Demeter is that 
a method depends only on the inter- 
faces of its arguments and its instance 
variables, but it does not depend on 
their structure. 

The Law of Demeter increases in- 
formation hiding. Ideally, a class 
hides its implementation, but it is 
common for programmers to define 
an interface that lets clients of a class 
depend on its implementation de- 
tails. As an extreme example, the 
only methods defined by a class 
might be accessing methods that 
simply read or write the instance 
variables. A more common situation 
is where a client can get a pointer to 
an array of components or to an in- 
ternal hash table. Changing the rep- 

resentation of the class will then 
require changing all its clients. The 
Law of Demeter will not completely 
eliminate this, because it does not 
prevent a method from retrieving a 
component and then using it as an 
argument to another method, it just 
prevents the component from being 
the direct receiver of a message. 

The Law of Demeter can be en- 
forced; the Demeter system contains 
tools that will check whether a design 
follows the Law of Demeter. It re- 
duces unnecessary object coupling 
and helps new programmers learn 
good programming style. This does 
not reduce the power of object- 
oriented programming, because any 
program can be transformed into a 
program that follows the Law of 
Demeter. 

The Law of Demeter minimizes 
the coupling between classes and 
makes it easier to change a class in- 
terface. It increases information 
hiding by ensuring that one class 
cannot depend on the implementa- 
tion of another. The Law of Demeter 
localizes type information. Thus, 
programs are easier to understand 
because each method depends on 
only a few interfaces. There are some 
disadvantages to the Law of Demeter 
[45], but it is an important contribu- 
tion to object-oriented design rules. 

The Demeter project is trying to 
find other rules of good design. Ob- 
ject interactions imply dependencies 
between the classes of the objects. 
These dependencies affect the reus- 
ability of classes and the cost of future 
development and maintenance of the 
software. Thus, rules like the Law of 
Demeter can have a big impact on 
the cost of developing software. 

Conclusion 
One indication that the work on 
standardization of terminology by 
the group at Hewlett-Packard is 
needed is the differences in terminol- 
ogy seen here. However, the fact that 
different groups are forced to invent 
terminology for the same concepts 
indicates that the concepts are 
important. 

One set of similar concepts is in- 
terface description, contracts, and 
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role. These phrases all describe look- 
ing at an object by its specification. 
This is important because (as the 
Hewlett-Packard definition clearly 
states) classes are really implementa- 
tion, and designers emphasize the 
way objects behave instead of how 
they are constructed. Thus, object- 
oriented designers need ways oftalk- 
ing about specification. “Contract” 
differs from the other two phrases 
because both the client and the server 
are included in the contract, while 
“interface description” and “role” 
emphasize the view of the servers. 
This difference might not be very im- 
portant, since clients will refer to 
servers by their specification and not 
their class. 

The Hewlett-Packard ensembles 
seem to be the same as the Tektronix 
subsystems. These phrases describe 
groups of objects that are designed to 
work together. This is important 
because it shows that classes alone do 
not provide enough structure for 
large systems. Therefore, additional 
structure is needed to organize how 
objects work together. None of the 
existing object-oriented program- 
ming languages or programming 
environments provide very good sup- 
port for describing how groups of ob- 
jects work together. 

Scripting languages have the same 
purpose as the Structure Specilica- 
tions and Object Instantiation of 
OORASS, and may indeed be the 
same. They emphasize the fact that 
an important part of creating an 
object-oriented application is con- 
necting objects to each other and pro- 
viding them with parameters. This 
will be an important area of research 
in the future, since the emergence of 
frameworks will mean that a larger 
fraction of programming will be con- 
figuring existing components. 

Each design method described 
here differs from the others signifi- 
cantly. The Tektronix process has two 
main phases, exploration and a de- 
tailed design phase. The exploration 
phase uses modeling to find classes, 
responsibilities for each class, and 
collaborations between objects of dif- 
ferent classes. The exploration phase 
is very iterative; finding a new re- 

sponsibility might lead to new col- 
laborations or classes. The detailed 
design phase determines inheritance, 
subsystems, and contracts, and fo- 
cuses on building a design that will be 
as reusable as possible. 

OORASS looks at a much larger 
part of the life cycle. It has five stages, 
and the first two, finding roles and 
object specification, cover the same 
part of the life cycle as the Tektronix 
method. It does not seem to provide 
as good a mechanism for automati- 
cally finding faults in the design as 
the Tektronix design process. How- 
ever, the Tektronix design method 
could probably be adapted for use 
as the first two steps in the SI de- 
sign process. On the other hand, 
OORASS not only includes class im- 
plementation (the third stage), but 
the structure specification stage and 
the object instantiation stage describe 
how applications are configured from 
preexisting parts. 

The Demeter design process is to 
construct class dictionaries, convert 
them into class modules by adding 
interface specifications, and then to 
build and follow a growth plan to im- 
plement the classes. This differs from 
the other two design processes in em- 
phasizing the structure of classes. 
Also, inheritance is emphasized from 
the beginning. Although all three 
design processes emphasize looking 
at examples, the Demeter system 
provides tools to automatically con- 
struct concrete classes from ex- 
amples, and abstract classes from 
concrete classes. Thus, it is even 
more example-driven than the other 
two. 

Although each of these methods 
has its own unique characteristics, 
they are more complementary than 
they are competing. Differences in 
vocabulary hide their similarities. As 
object-oriented design methods ma- 
ture, they will borrow ideas from one 
another. The design methods of the 
future will integrate and expand on 
these ideas to support larger-scale 
design and composition at all levels 
and help object-oriented programm- 
ing live up to its potential to make 
software more reusable and hence 
less expensive and more reliable. q 
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