
Empir Software Eng (2010) 15:493–522
DOI 10.1007/s10664-009-9125-9

An empirical study on the efficiency of different design
pattern representations in UML class diagrams

Gerardo Cepeda Porras · Yann-Gaël Guéhéneuc

Published online: 27 February 2010
© Springer Science+Business Media, LLC 2010
Editor: Laurie Williams

Abstract Design patterns are recognized in the software engineering community as
useful solutions to recurring design problems that improve the quality of programs.
They are more and more used by developers in the design and implementation
of their programs. Therefore, the visualization of the design patterns used in a
program could be useful to efficiently understand how it works. Currently, a common
representation to visualize design patterns is the UML collaboration notation.
Previous work noticed some limitations in the UML representation and proposed
new representations to tackle these limitations. However, none of these pieces of
work conducted empirical studies to compare their new representations with the
UML representation. We designed and conducted an empirical study to collect
data on the performance of developers on basic tasks related to design pattern
comprehension (i.e., identifying composition, role, participation) to evaluate the
impact of three visual representations and to compare them with the UML one. We
used eye-trackers to measure the developers’ effort during the execution of the study.
Collected data and their analyses show that stereotype-enhanced UML diagrams
are more efficient for identifying composition and role than the UML collaboration
notation. The UML representation and the pattern-enhanced class diagrams are
more efficient for locating the classes participating in a design pattern (i.e., identifying
participation).

This work has been partly funded by the Canada Research Chair on Software Patterns
and Patterns of Software, a NSERC Discovery Grant, and a CFI Infrastructure Grant.

G. Cepeda Porras
Ptidej Team, Département d’informatique et de recherche opérationnelle,
Université de Montréal, Montréal, Canada
e-mail: cepedapg@iro.umontreal.ca

Y.-G. Guéhéneuc (B)
Ptidej Team, Département de génie informatique et génie logiciel,
École Polytechnique de Montréal, Montréal, Canada
e-mail: yann-gael.gueheneuc@polymtl.ca

494 Empir Software Eng (2010) 15:493–522

Keywords Eye-tracking · Design patterns · Visualization · Empirical study ·
UML class diagrams

1 Introduction

Program comprehension is needed to construct a mental representation of the
architecture of programs and to develop and maintain programs efficiently
(Kazman et al. 1998). Diagrams are essential visual tools to construct these mental
representations, highlighting useful information about objects and their relations
(Chabris and Kosslyn 2005). In object-oriented software engineering, where objects
are represented by classes, UML class diagrams are the facto standard to represent
programs (Object Management Group 1997). These class diagrams are thought
to facilitate program comprehension by reducing developers’ effort in building
their mental representation. They have been extensively studied in the program
comprehension literature (Purchase et al. 2002; Eichelberger and von Gudenberg
2003; Sun and Wong 2005) and there exist many tools to build or generate UML
class diagrams.

Design Patterns (Gamma et al. 1998) are solutions to recurring problems when
designing object-oriented programs. They summarize and make explicit good design
practices. The software engineering community pointed out that the knowledge
and good use of design patterns is useful to improve program comprehension and
quality, for example (Gamma et al. 1998; Shalloway and Trott 2002; Aversano
et al. 2007). Currently, a common representation to visualize design patterns is
the UML collaboration notation (Object Management Group 1997), noted UML
in the following and exemplified in Fig. 1. This representation is common since its
first use in the GoF’s book “Design Patterns” (Gamma et al. 1998) and its use has

subject

children

getName()
getProtection()
streamIn(istream)
streamOut(ostream)
getChild(int)
adopt(Node)
orphan(Node)

Node

streamIn(istream)
streamOut(ostream)
getChild(int)
adopt(Node)
orphan(Node)

Directory
streamIn(istream)
streamOut(ostream)

File
streamIn(istream)
streamOut(ostream)
getSubject()

Link

Proxy CompositeSubject

RealSubject

Proxy

Component

Leaf
Composite

Fig. 1 UML collaboration notation UML, reproduced from Vlissides (1998), on a simple file system
model

Empir Software Eng (2010) 15:493–522 495

been advocated by respected designers/architects, including Rebecca Wirfs-Brock.1

Previous work pointed out some limitations of this representation (as discussed
in Section 2) and proposed alternative representations. These representations vary
from strongly visual (Schauer and Keller 1998) to strongly textual (Dong et al. 2007).
We can divide these representations in two groups: non-UML based representations
(Eden et al. 1997; Mapelsden et al. 2002) and UML based representations (Gamma
1996; Lauder and Kent 1998; Schauer and Keller 1998; France et al. 2004; Trese and
Tilley 2007; Dong et al. 2007). These two groups can be divided in two sub-groups:
mono-diagram representations (Gamma 1996; Schauer and Keller 1998; Trese and
Tilley 2007; Dong et al. 2007) and multi-diagram representations (Lauder and Kent
1998; France et al. 2004).

However, none of the previous pieces of work perform an empirical study to
compare their proposed representations with the common one. Thus, conducting
an empirical study to evaluate the efficiency of representations to visualize design
patterns in UML diagrams is important: first, it gives a framework for comparing
current and future notations; second, it shows that notations have advantages and
weaknesses; and, third, its results could be use to motivate tool builders to include
different notations for different tasks. In particular, it could help developers to
choose the right representation for their tasks at hand and researchers by providing
ground for future research in program comprehension to further improve existing
representations.

In this study, we only consider UML-based mono-diagram representations be-
cause this group of representations is the most used now by the software engineering
community. Thus, we retain three representations to analyze and compare the
performance of developers with Representation UML. We choose these represen-
tations because they are the main representatives of the few attempts to propose an
alternative to UML collaboration notation using UML-based mono-diagrams. These
representations are:

– pattern-enhanced class diagrams, noted Schauer2 in the following (strongly
visual, see Fig. 2) (Schauer and Keller 1998);

– stereotype-enhanced UML diagrams, noted Dong in the following (strongly
textual, see Fig. 3) (Dong et al. 2005, 2007);

– “pattern:role” notation, noted Gamma in the following (visual and textual, see
Fig. 4) (Gamma 1996).

In our study, we design experiments to collect data to compare developers’
performance while performing three basic tasks in design pattern comprehension:

– class participation, noted Participation in the following: identifying all the classes
that participate in a design pattern;

– roles play, noted Role in the following: identifying the role a class plays in a given
pattern;

– pattern composition, noted Composition in the following: identifying all design
patterns in which a class participates.

1http://www.objectsbydesign.com/books/RebeccaWirfs-Brock.html
2In the following, for the sake of simplicity, we use the last name of the first author of a notation to
denote its representation.

http://www.objectsbydesign.com/books/RebeccaWirfs-Brock.html

496 Empir Software Eng (2010) 15:493–522

Composite

Proxy

subject

children

getName()
getProtection()
streamIn(istream)
streamOut(ostream)
getChild(int)
adopt(Node)
orphan(Node)

Node

streamIn(istream)
streamOut(ostream)
getChild(int)
adopt(Node)
orphan(Node)

Directory
streamIn(istream)
streamOut(ostream)

File
streamIn(istream)
streamOut(ostream)
getSubject()

Link

Fig. 2 Pattern-enhanced class diagrams, Schauer, on the same file system model used in Fig. 1

We measure performance in terms of the percentage of correct answers and of
the developers’ effort spend to perform the given tasks from data collected using
eye-trackers: the less effort and the better percentage of correct answers, the greater
the subject’s performance. For each representation used in the study, we use the
same UML class diagram to which we add the representations to visualize pattern-
related information. Design patterns used in this study are: Composite, Prototype,
Template Method, State, and Singleton. We also compare the effectiveness of each
representation for diagrams with a small density of classes (15 classes) and with a
larger density of classes (40 classes).

subject children

<<PatternOperation{Request@Proxy[1]}>>getName()
<<PatternOperation{Request@Proxy[1]}>>getProtection()
<<PatternOperation{AbstractOperationt@Composite[1]}>> streamIn(istream)
<<PatternOperation{AbstractOperationt@Composite[1]}>> streamOut(ostream)
getChild(int)
adopt(Node)
orphan(Node)

<<PatternClass{Subject@Proxy[1]}{RealSubject@Proxy[1]}{Component@Composite[1]}>>
Node

<<PatternOperation{Operationt@Composite[1]}>> streamIn(istream)
<<PatternOperation{Operationt@Composite[1]}>> streamOut(ostream
getChild(int)
adopt(Node)
orphan(Node)

<<PatternClass{Composite@Composite[1]}>>
Directory

<<PatternOperation{Operationt@Composite[1]}>> streamIn(istream)
<<PatternOperation{Operationt@Composite[1]}>> streamOut(ostream)

<<PatternClass{Leaf@Composite[1]}>>
File

<<PatternOperation{Operationt@Composite[1]}>> streamIn(istream)
<<PatternOperation{Operationt@Composite[1]}>> streamOut(ostream)
<<PatternOperation{Request@Proxy[1]}>> getSubject()

<<PatternClass{Proxy@Proxy[1]}}>>
Link

Fig. 3 Stereotype-enhanced UML diagrams, Dong, on the file system model used in Fig. 1

Empir Software Eng (2010) 15:493–522 497

subject

children

getName()
getProtection()
streamIn(istream)
streamOut(ostream)
getChild(int)
adopt(Node)
orphan(Node)

Node

streamIn(istream)
streamOut(ostream)
getChild(int)
adopt(Node)
orphan(Node)

Directory
streamIn(istream)
streamOut(ostream)

File
streamIn(istream)
streamOut(ostream)
getSubject()

Link

Proxy:Subject
Proxy:RealSubject
Composite:Component

Composite:Leaf
Proxy

Composite

Fig. 4 Pattern:role notation, Gamma, reproduced from Vlissides (1998), on the same file system
model used in Fig. 1

We collect data for 24 developers. We report that, for the diagrams of 15 classes,
developers performed significantly better on Representation UML when compared
to Representation Dong for Task Participation. However, for Tasks Composition
and Role, RepresentationDong performed significantly better than Representation
UML. The other two representations did not show statistically significant differences
when compared with Representation UML. However, Representation Schauer pro-
vides similar performance to Representation UML for Tasks Participation and Com-
position. Additionally, we report that the level of knowledge of design patterns could
influence significantly the performance of users when performing Task Composition
with representations UML and Gamma.

For the diagrams of 40 classes, we report that developers performed significantly
better on Representation UML when compared to Dong for Task Participation
similarly to the results of 15 classes diagrams. For the other two representations,
we cannot report any statically significant differences. For the other two tasks, we
cannot report any statically significant differences. We also point out the influence of
readability on the results for the diagrams of 40 classes.

The remainder of this paper is organized as follows. In the following Section 2,
we present related work. In Section 3, we present the experimental design and the
running of our experiments. We analyze the collected data and present results in
Section 4. We assess the validity of our study in Section 5 and conclude in Section 6.

2 Related Work

This paper relates to three fields of study: program comprehension, design pattern
visualization on UML class diagrams, and eye-tracking studies.

498 Empir Software Eng (2010) 15:493–522

2.1 Program Comprehension

Program comprehension is subject of several research works.
Several authors proposed and evaluated models to form and abstract a mental

representation of a program to achieve program comprehension. For example,
Soloway et al. (1988) suggested that developers use plans (Rich and Waters 1988)
when comprehending a program. Von Mayrhauser (1995) described the process of
program comprehension as a combination of top-down and bottom-up tasks, based
on existing knowledge.

All developers use diagrams as a means to convey information to other developers
or to better understand programs. Diagrams reduce the comprehension and learning
effort by omitting irrelevant details and highlighting pertinent information about
objects and their relations. The closer the information presented on diagrams is to
the developer’s mental representation, the easier it is to understand (Chabris and
Kosslyn 2005). Several studies have been conducted about program comprehension
using UML class diagrams. For example, Purchase et al. (2002) conducted a study on
the preference of developers on aesthetics of UML class diagrams. They concluded
on aesthetic criteria for UML class diagrams, including joined inheritance arcs and
directional indicators. Eichelberger (2003) studied the relations between semantics
in UML class diagrams, principles of human–computer interactions, and principles
of object-oriented modelling. He presented aesthetic criteria to layout UML class
diagrams to improve readability.

Sun and Wong (2005) classified selected criteria from previous work, using laws
from the Gestalt theory of visual perception, the organizational perception theory,
and the segregative perception theory (Moore and Flitz 1993). They retained 14
criteria to assess the quality of UML class diagram layouts. They used these criteria
to evaluate the efficiency of layout algorithms of two commercial tools, Rational
Rose and Borland Together. They concluded on the good quality of both tools,
the difficulty of both tools to satisfy all criteria. They suggested characteristics to
be improved in these two tools in the future. We use these criteria to layout our
diagrams.

Previous work provides a good basis for building empirical studies on program
comprehension and important criteria to layout our UML class diagrams.

2.2 Design Pattern Visualization

Expressing design decisions by highlighting the design patterns used in an existing
architecture leads to a better understanding of how a program works. Conversely,
the lack of pattern-related information could impede the program comprehension
process.

A common representation to visualize design patterns is the UML collaboration
notation, UML (Object Management Group 1997) (as illustrated in Fig. 1, also called
parameterized collaboration diagrams). This representation uses dashed ellipses
(with the patterns names) and lines (with the role names that classes play) to
associate the patterns to their participating classes. However, too many dashed

Empir Software Eng (2010) 15:493–522 499

lines lead to reading problems because information is being mixed (and sometimes
cluttered) with other diagram elements.

With the goal of removing the cluttering dashed lines in UML, Vlissides (1998)
proposed Representation Gamma, where all pattern-related information is con-
tained in shaded boxes which are placed close to the classes participating in patterns
(see Fig. 4). This representation first appears in the GoF’s book (Gamma 1996),
before being described in Vlissides (1998), hence its name. This representation is
highly readable because it puts the pattern-related information in another plan with
the diagram. However, this representation could increase significantly the size of the
original diagram. Also, the combination of gray boxes with white typography could
lead to reading problems on printed media.

Schauer and Keller (1998) implemented a prototype to ease program comprehen-
sion based on design pattern recognition and visualization techniques. To visualize
design patterns, the prototype offers three views:

– the pattern-enhanced class diagrams, Representation Schauer, a mono-diagram
UML-based representation that uses different colored borders to identify pat-
tern participation and also uses the canonical representation (Gamma et al. 1998)
to help users infer the roles each class plays on that pattern, see Fig. 2;

– the pattern-analysis view, a multiple view composed of the first view and a
catalog of design patterns showing their intents, applications, and consequences;

– a dynamic view called pattern collaboration diagrams, which shows collabora-
tions between implemented design patterns on a pattern-level and also in the
class-level dynamically.

Trese and Tilley (2007), to improve readability and comprehension of programs,
proposed the class participation diagrams, as illustrated in Fig. 5. In this representa-
tion, classes are clustered by design pattern (showed in their canonical representa-
tion) and grouped by categories: creational, behavioral, and structural (as defined in
Gamma et al. (1998)). They also apply some aesthetics criteria in spacing and shading
to ease readability. However, this representations lacks some important information,
such as the name of the design patterns or the role a class play, that can lead to
confusion.

Dong et al. (2007) proposed a UML profile with new stereotypes, tagged values,
and constraints to visualize pattern-related information in UML class diagrams.
Their Representation, Dong, uses tagged values to hold information about the roles
that a class, a method, or an attribute plays in a design pattern and also deals with
multiple instances of design patterns, as shown in Fig. 3. This representation has
the advantage of expressing clearly pattern-related information. However, the text
overload could increase considerably the size of classes as well as make the diagrams
harder to read. To address this issue, they developed a Web service, VisDP, to
dynamically visualize design pattern information on demand.

Previous work provides us with several representations for our study on design
pattern visualization using UML class diagrams. These representations vary from
mostly graphical to mostly textual. To the best of our knowledge, none of this
previous work conducted empirical studies to evaluate the efficiency of their rep-
resentations with the common representation.

500 Empir Software Eng (2010) 15:493–522

subject

getName()
getProtection()
streamIn(istream)
streamOut(ostream)
getChild(int)
adopt(Node)
orphan(Node)

Node

streamIn(istream)
streamOut(ostream)
getSubject()

Link

children

getName()
getProtection()
streamIn(istream)
streamOut(ostream)
getChild(int)
adopt(Node)
orphan(Node)

Node

streamIn(istream)
streamOut(ostream)
getChild(int)
adopt(Node)
orphan(Node)

Directory
streamIn(istream)
streamOut(ostream)

File

B
eh

av
io

ra
l

C
re

at
io

n
al

S
tr

u
ct

u
ra

l
N

o
n

-P
at

te
rn

Fig. 5 Class participation diagrams, on the same file system model used in Fig. 1

2.3 Eye-tracking Studies

Eye tracking systems collect eye movement data to provide an insight into a subject’s
focus of attention, making it possible to draw conclusions about the underlying
cognitive processes (Rayner 1998). These systems are based on the physiology of
human visual capabilities and cognitive theories, like the theories on visual attention
and visual perception (Duchowski 2003).

Eye trackers have been traditionally used in cognitive psychology (Rayner 1998).
These systems are also increasingly used in other domains, such as marketing,
industrial design, and computer science. In computer science, eye-trackers have been
used in studies on graphic data processing, human–computer interfaces, and virtual
reality (Duchowski 2003). The software engineering community started only recently
to show an interest in using eye-tracking systems to study program comprehension.

For instance, Bednarik and Tukiainen (2006) proposed an approach to study
trends on repeated measures of sparse data over a small data set of program compre-
hension activities captured with eye-trackers. Using this approach, they characterized
program comprehension strategies using different program representations (code
lecture and program execution). The second author of this paper also conducted
an experiment with eye-trackers to study how software engineers acquire and

Empir Software Eng (2010) 15:493–522 501

use information from UML class diagrams (Guhneuc 2006). He concluded on the
importance of classes and interfaces and reported that developers seem to barely
use binary class relationships, such as heritage or composition. Yusuf et al. (2007)
conducted a similar study to analyze the utilization of specific characteristics of UML
class diagrams (e.g., layout, color, and stereotypes) during program comprehension.
They concluded on the efficiency of layouts with additional information as colors or
stereotypes to improve program comprehension.

We follow this previous work in this study of the efficiency of representations for
design pattern visualization on program comprehension.

3 Experimental Design

The design of our study aims at testing whether or not developers’ performance
improves when performing design pattern comprehension tasks using Representa-
tions Dong, Gamma, and Schauer, when compared to Representation UML. We
measure performance in terms of the percentage of correct answers and developers’
effort spend to perform the given tasks. To assess the developers’ effort while
executing the study, we use eye trackers to collect relevant data as in previous studies
(Guhneuc 2006; Yusuf et al. 2007). Therefore, our design is directed by the use of eye-
trackers. We first present and justify our choice for the three representations and
three tasks used in this study. Then, we detail our hypotheses, objects, dependent
and independent variables, and subjects. Finally, we present briefly our eye-tracking
system and the procedure followed to carry out this study.

3.1 Representations

An analysis of the representations proposed in the literature leads us to choose:
Representation Schauer proposed by Schauer et al. (1998) for its simplicity, its ease
for visually identify design patterns, and its use of the canonical representation to
identify key information about design patterns (see also Trese and Tilley’s approach
(Trese and Tilley 2007)). Representation Dong proposed by Dong et al. (2007) was
selected because it is strongly textual. We retained Representation Gamma (Gamma
1996; Vlissides 1998) because it is both a visual and a textual notation. In addition,
Representation Gamma shows the information relative to design patterns on a
different plan (because of the shading effect) that could also reduce the developers’
effort and ease the reading of diagrams. We reject Trese and Tilley’s approach
because it lacks some important information as explained in the previous section
and also because it changes the original UML class diagram and we would not be
able to compare it fairly to the other representations.

3.2 Tasks

In the cognitive approach of systems (Hutchins 1995), the goal is to find a means
to facilitate data acquisition (Ware 2005). Following this approach, our tasks were
designed to measure the cognitive charge, in terms of developers’ effort, related to
pattern comprehension activities. We choose 3 tasks for which a representation of
design patterns could be useful, that are recurring in program comprehension, and

502 Empir Software Eng (2010) 15:493–522

that keep experimental trials short in time, ensuring the highest accuracy of recorded
data (Guan et al. 2006):

– class participation, Participation: i.e., to identify all classes participating in a
design pattern.

– pattern composition, Composition: i.e., to identify all design patterns a class
participates in.

– roles played, Role: i.e., to identify the roles a class play in a design pattern.

We will use these three tasks (which are key for pattern comprehension) to com-
pare the different representations with UML. We rejected other tasks, for example
the tasks of identifying multiple instances of the same design pattern, because it
cannot be performed by developers satisfactorily using all the representations.

3.3 Hypotheses

We want to assess the following three null hypotheses when performing the Tasks
Participation, Composition, and Role:

– H01 : There is no difference in the average effort and accuracy of subjects using
Representation UML and subjects using Representation Dong.

– H02 : There is no difference in the average effort and accuracy of subjects using
Representation UML and subjects using Representation Gamma.

– H03 : There is no difference in the average effort and accuracy of subjects using
Representation UML and subjects using Representation Schauer.

If the previous null hypotheses are rejected, we could assume (with respect to the
threats to the validity assessed in Section 5) that either one of each of the following
alternative hypotheses are verified:

– Hα3.1 : The average effort and accuracy is superior for subjects using Representa-
tion Dong than for subjects using Representation UML.

– Hα3.2 : The average effort and accuracy is inferior for subjects using Representa-
tion Dong than for subjects using Representation UML.

– Hα2.1 : The average effort and accuracy is superior for subjects using Representa-
tion Gamma than for subjects using Representation UML.

– Hα2.2 : The average effort and accuracy is inferior for subjects using Representa-
tion Gamma than for subjects using Representation UML.

– Hα1.1 : The average effort and accuracy is superior for subjects using Representa-
tion Schauer than for subjects using Representation UML.

– Hα1.2 : The average effort and accuracy is inferior for subjects using Representa-
tion Schauer than for subjects using Representation UML.

We choose to compare the three representations Schauer, Gamma, and Dong
against UML and not against one another for two reasons. First, a study of the
different notations against one another would have required much more subjects.

Empir Software Eng (2010) 15:493–522 503

Second, we do not compare the aggregated results of diagrams of 15 and 40 classes
because we do not assess and ensure that they have the same complexity.

3.4 Objects

We choose the open-source program JHotDraw for our study. JHotdraw (2007) is
a framework to implement technical and structured drawings. It was designed by
Gamma and Eggenschwiler as a show case for the use of design patterns.

Because full documentation was not available, partial reverse engineering was
performed on JHotDraw to obtain its design as a UML class diagram. We ob-
tained one diagram from JHotDraw by reverse engineering and then we created
two diagrams (of 15 and 40 classes) by selecting a set of consistent classes the
use the following design patterns: Composite, Prototype, Template Method, State,
and Singleton, as implemented in JHotDraw. We chose these six patterns among
other patterns implemented in JHotDraw, for example Strategy, because they are
representatives of creational, behavioural, and structural design patterns and because
they are clearly distinguishable among themselves. Also, a previous study (Khomh
and Guéhéneuc 2008) showed that these patterns have mostly a positive subjective
impact of software quality characteristics (expendability, understandability, and
reusability). It is therefore interesting to study if they also have a positive impact
on effort and accuracy.

We follow the canonical representation of the chosen design patterns (i.e., as
described in Gamma et al. (1998) as much as possible). However, there are slight
differences mainly due to language implementation issues (e.g., the use of interfaces
and abstract classes in Java). Both diagrams of 15 classes (see Fig. 6) and diagrams of
40 classes (available on-line at http://url.hidden-for-double-blind.review due to space
constraints), have the same classes participating in design patterns. There is only a

<<Interface>>

DrawingView

+ tool() : Tool
+ drawing() : Drawing
+ edition() : DrawingEditor

<<Implementation>>

+ tool() : Tool
+ drawing() : Drawing
+ edition() : DrawingEditor
+ mousePressed(MouseEvent) : void
+ mouseDragged(MouseEvent) : void
+ mouseReleased(MouseEvent) : void
+ getInstance() : StandardDrawingView
- StandardDrawingView() : void

- fDrawing : Drawing
- fEditor : DrawingEditor
- fSelection : Vector

StandardDrawingView

+state

<<Implementation>>

fView : DrawingView

+ AbstractTool(itsView : DrawingView) :
+ drawing() : Drawing
+ edition() : DrawingEditor
+ view() : DrawingView
+ activate() : void
+ deactivate() : void
+ mouseDown(MouseEvent, x : int, y : int) : void
+ mouseDrag(MouseEvent, x : int, y : int) : void
+ mouseUp(MouseEvent, x : int, y : int) : void

AbstractTool
<<Interface>>

+ activate() : void
+ deactivate() : void
+ mouseDown(MouseEvent, x : int, y : int) : void
+ mouseDrag(MouseEvent, x : int, y : int) : void
+ mouseUp(MouseEvent, x : int, y : int) : void

Tool

+ SelectionTool(DrawingView) :
+ mouseDown(MouseEvent, x : int, y : int) : void
+ mouseDrag(MouseEvent, x : int, y : int) : void
+ mouseUp(MouseEvent, x : int, y : int) : void
createAreaTracker(DrawingView) : Tool
createDragTracker(DrawingView, Figure) : Tool

SelectionTool

<<Interface>>

+ clone() : Object
+ draw(Graphics) : void
+ moveBy(x : int, y : int) : void
+ addFigureChangeListener(FigureChangeListener) : void
+ removeFigureChangeListener(FigureChangeListener) : void

Figure

- fCreatedFigure : Figure
- fPrototype : Figure

+ CreationTool(DrawingView, prototype : Figure) :
+ activate() : void
+ mouseDown(MouseEvent, x : int, y : int) : void
+ mouseDrag(MouseEvent, x : int, y : int) : void
+ mouseUp(MouseEvent, x : int, y : int) : void
createFigure() : Figure

CreationTool

+prototype

AbstractFigure

+ clone() : Object
+ moveBy(x : int, y : int) : void

+void draw(Graphics) {
...
drawBackground(Graphics)
drawFrame(Graphics)
...
}

AttributeFigure

+ draw(Graphics) : void
drawBackground(Graphics) : void
drawFrame(Graphics) : void

CompositeFigure

+ draw(Graphics) : void
+ add(Figure) : Figure
CompositeFigure() :

fFigures[0..*] : Figure

+consists of

0..*

RectangleFigure

+ drawBackground(Graphics) : void
+ drawFrame(Graphics) : void

- fDisplayBox : Rectangle

TextFigure

+ drawBackground(Graphics) : void
+ drawFrame(Graphics) : void

- fOriginX : int
- fOriginY : int

EllipseFigure

+ drawBackground(Graphics) : void
+ drawFrame(Graphics) : void

- fDisplayBox : Rectangle

<<Implementation>>

StandardDrawing

+ StandardDrawing() : void
- readObject(ObjectInputStream) : void

Fig. 6 JHotDraw diagram of 15 classes used in the study

http://url.hidden-for-double-blind.review

504 Empir Software Eng (2010) 15:493–522

slight change in the layout of the diagrams of 40 classes because of the relationship
between the new classes added to the diagram. All representations are superposed on
the same two UML class diagrams. All the diagrams used for the study are available
on the companion web site.

3.5 Independent Variables

From the hypotheses, we identify the following independent variables:

– Representations: UML, Schauer, Gamma, Dong are the possible values for this
variable, these values represent the four representations chosen in our study. We
use the indexes 15 and 40 to distinguish between diagrams with small class density
from diagrams with larger class density. We chose to analyze separately diagrams
with different class density because the graph complexities are different.

– Tasks: Participation, Composition, Role are the values for this variable. these
values represent the three tasks chosen in our study.

We retain two mitigating variables to study and better understand the results of
our study:

– JHotDraw Knowledge: The subjects’ knowledge of JHotDraw. The level is
established using a questionnaire. Values are taken from [0,1,2] where 2 means
that a subject has a good knowledge of JHotDraw, 1 that the subject has a basic
knowledge of JHotDraw, and 0 that the subject has no knowledge of JHotDraw.

– DP Knowledge: The subjects’ knowledge of design patterns. The level is also
established using a questionnaire following the same method as for the previous
variable.

3.6 Dependent Variables

The dependent variables are chosen according to our hypotheses and independent
variables based on the capabilities of eye-tracking systems. We measure perfor-
mance in terms of correct answer percentage (CAP) and the developers’ effort
spend to perform given tasks. We establish for each diagram (Dong15/Dong40,
Gamma15/Gamma40 Schauer15/Schauer40, and U ML15/U ML40) a set of area of
interest (AOI) and a set of area of glance (AOG). An area of glance is any class
or notation element part of the diagrams. An area of interest is a relevant class or
notation element in a diagram that should be the focus of the subjects’ attention to
perform a particular task Participation, Composition, or Role. Both sets vary with
the task to perform. We collect data about fixations on AOI and AOG to compute
developers’ effort. From fixations collected (see Section 3.9), we use the following
metrics:

– Average Fixation Duration (AFD): This measure is correlated with cognitive
functions (Goldberg and Kotval 1999; Duchowski 2003). It is computed as
follows:

AF D =
∑n

i=1 (ET(Fi) − ST(Fi)) in AOG
n

Empir Software Eng (2010) 15:493–522 505

where ET(Fi) and ST(Fi) represent the end time and start time for fixation Fi

and n represent the total number of fixations in AOG . Longer fixations mean
that users are spending more time interpreting or assembling the representation
elements to build their internal mental representation. Representations that
require shorter fixations are thus more efficient.

– Ratio of “On_target:All_target” Fixation Time (ROAFT) (Goldberg and
Kotval 1999): The ratio of the time passed in the AOI divided by the time passed
in the AOG sets. It is computed as follows:

ROAFT =
∑n

i=1 (ET(Fi) − ST(Fi)) in AOI
∑m

j=1 (ET(F j) − ST(F j)) in AOG

where ET(Fi), ET(F j) and ST(Fi), ST(F j) represent the end time and start time
for fixation Fi or F j respectively, n and m represent the total number of fixations
in AOI and AOG respectively. Smaller ratios indicate lower efficiency.

– Ratio of “On_targer:All_target” Fixations (ROAF) (Goldberg and Kotval
1999): This ratio is a content-dependent efficiency measure of visual search
(Duchowski 2003). It is computed as follows:

ROAF = Total Number of Fixations in AOI
Total Number of Fixations in AOG

Smaller ratios indicate lower efficiency caused by a greater effort needed to find
the pertinent elements required to perform the task.

3.7 Subjects

The study was performed by 24 subjects doing their Ph.D. or M.Sc. studies at the
Department of Informatics and Operations Research at University of Montreal. All
subjects were volunteers. They have designed software architecture and used UML
class diagrams and design patterns during their studies for at least two years.

We design our experiment as two between-subjects experiments on diagrams of
15 and 40 classes. The subjects are placed into balanced groups. Using balanced
groups simplifies and strengthens the statistical analysis of collected data (Wohlin
et al. 2000). Each subject performs the experience for the three different Tasks Com-
position, Participation, and Role over two different representations with different
class densities. Table 1 show the subjects’s distribution for the study.

Table 1 Subjects’s
distribution for the study

15 40

Dong S9, S11, S12, S21, S23, S24 S3, S5, S6, S15, S17, S18

Gamma S6, S8, S10, S18, S20, S22 S2, S4, S12, S14, S16, S24

Schauer S4, S5, S7, S16, S17, S19 S1, S10, S11, S13, S22, S23

UML S1, S2, S3, S13, S14, S15 S7, S8, S9, S19, S20, S21

506 Empir Software Eng (2010) 15:493–522

Table 2 Questions for tasks composition, participation and role

Pattern composition task
Q1. Mention all design patterns the class CreationTool participates in.

Q2. Mention all design patterns the class AttributeFigure participates in.

Class participation task

Q3. Mention all classes participating in the Composite design pattern.

Q4. Mention all classes participating in the State design pattern.

Roles played by a class task

Q5. Mention all roles played by the class AbstractFigure.

Q6. Mention all roles played by the class StandardDrawingView.

3.8 Questions and Stimulus

Choosing the appropriate question is particularly important for eye-tracking studies
(Duchowski 2003) because eye movements are dependent on the nature of the task
at hand. Therefore, we choose questions that allow the subjects to answer in a
short delay (one to two minutes) using only the information given by the different
representations. We defined two questions for each task, one for each class density.
Table 2 shows the questions used for the experiment and Fig. 7 shows the questions’
distribution in the study. These questions are appropriate to analyze the efficiency of
the studied representations.

An object of attention viewed by a subject is called a “stimulus”. We combine
one question with one diagram to form a stimulus. Previous work highlighted the
subjects’ tendency to look to the stimulus’ top-left corner (Goldberg et al. 2002;

Fig. 7 Questions’ distribution in the study

Empir Software Eng (2010) 15:493–522 507

State :StateContext
Singleton :Singleton

State :ConcreteState

State :ConcreteState
Prototype :Client

State : State

<<Interface>>

DrawingView

+ tool() : Tool
+ drawing() : Drawing
+ edition() : DrawingEditor

<<Implementation>>

+ tool() : Tool
+ drawing() : Drawing
+ edition() : DrawingEditor
+ mousePressed(MouseEvent) : void
+ mouseDragged(MouseEvent) : void
+ mouseReleased(MouseEvent) : void
+ getInstance() : StandardDrawingView
- StandardDrawingView() : void

- fDrawing : Drawing
- fEditor : DrawingEditor
- fSelection : Vector

StandardDrawingView

+state

<<Implementation>>

fView : DrawingView

+ AbstractTool(itsView : DrawingView) :
+ drawing() : Drawing
+ edition() : DrawingEditor
+ view() : DrawingView
+ activate() : void
+ deactivate() : void
+ mouseDown(MouseEvent, x : int, y : int) : void
+ mouseDrag(MouseEvent, x : int, y : int) : void
+ mouseUp(MouseEvent, x : int, y : int) : void

AbstractTool

+ SelectionTool(DrawingView) :
+ mouseDown(MouseEvent, x : int, y : int) : void
+ mouseDrag(MouseEvent, x : int, y : int) : void
+ mouseUp(MouseEvent, x : int, y : int) : void
createAreaTracker(DrawingView) : Tool
createDragTracker(DrawingView, Figure) : Tool

SelectionTool

+ clon
+ dra
+ mo
+ add
+ rem

- fCreatedFigure : Figure
- fPrototype : Figure

+ CreationTool(DrawingView, prototype : Figure) :
+ activate() : void
+ mouseDown(MouseEvent, x : int, y : int) : void
+ mouseDrag(MouseEvent, x : int, y : int) : void
+ mouseUp(MouseEvent, x : int, y : int) : void
createFigure() : Figure

CreationTool

+prototype

Nommer tous les patrons de conception dans lesquels participe la classe CreationTool

Fig. 8 Portion of the stimulus with Representation Gamma. (The question is in French because all
subjects were French-speakers)

Bojko 2005). Therefore we placed the question on the top-left corner of the screen,
the diagram filling the rest of the screen, as shown in Fig. 8, to prevent any bias
towards elements of the representations placed in the top-left corner.

The subjects were requested to provide their answer aloud, to avoid head move-
ments that could decalibrate the eye-tracker. Also, previous work (Guan et al. 2006)
showed that asking subjects to provide their answers aloud after having first recorded
their eye-movements to find the answer does not alter their gaze patterns. The
experimenter used a check-list to assess the accuracy of each answer. The experiment
was approved by the Ethical Review Board of Université de Montréal.

3.9 Equipment

We used the EyeLink II eye-tacking system from SR Research3 to perform our study.
This system has a high resolution (noise limited to 0.01◦) and fast data rate (500
samples per second). Its precision has an average gaze position error < 0.5◦.

3http://www.eyelinkinfo.com/

http://www.eyelinkinfo.com/

508 Empir Software Eng (2010) 15:493–522

The eye-tracker is composed of two computers and a head-band. One computer
is used for experiment execution and the other for system calibration and data
processing. The two computers communicate by an Ethernet connection. The head-
band includes two cameras and an infra-red emitter. The cameras use infra-red rays
that are reflected on the subject’s cornea to register eye-movements. Four sensors
are placed on the subject’s screen. These sensors work with the infra-red emitter and
allow computing the position of the head-band with respect to the screen.These four
sensors in combination with the cameras allow the system to compute precisely the
position of the subject’s gaze on the screen.

The communication between the two computers is based on the principle of
“Action/Event” → “Reaction”. When an event is emitted by the subject’s computer,
the experimenter’s computer reacts and takes the control back. The experimenter’s
computer compute the position of the subject’s gaze and record this data on the disk,
in real time. When the experimentation is finished, the experimenter’s computer
sends back the whole data file to the subject’s computer for future analysis. Fig. 9
shows all eye-tacking system’s components.

The system can collect two types of data: raw positions and parsed positions.
Parsed positions are given in terms of fixations and saccades based on physiological
thresholds. A fixation is a stabilization of the eye during a gaze. A saccade is a
quick movement of the eye from one fixation to another. The eyes are only sensitive
to the details in the center of the visual field, visual information is only treated
during fixations and not during saccades (Rayner 1998; Duchowski 2003; Ware 2005).
Similarly to previous work (Guhneuc 2006; Yusuf et al. 2007), we use fixations as a
measure of the amount of attention given by a subject to the different AOI and AOG
of a diagram.

We use a dentist chair to configure the environment of the experiment easily:
to align the subject’s head with the four sensors, avoid movements, and give more
comfort. We also use a travel pillow to give support to the subject’s neck and further

Fig. 9 Eye-tracker’s components (from SR Research web site)

Empir Software Eng (2010) 15:493–522 509

reduce head movements. We use a 17” CRT screen to show the stimulus. For each
subject, a session takes about 40–50 min, including a presentation of all the steps of
the study and legal issues, a tutorial on the representations and kinds of tasks, eye-
tracker’s calibration, data collection, and questionnaires.

3.10 Procedure

The experiments were conducted in a quiet room without any disturbances. The
procedure is as follows:

1. First, the subject registers for the study in person, by email, or using the
inscription Web site. The Web site gives a description of the study and a video
showing the eye-tracking system.

2. We present a tutorial to introduce the four representations used for the study
with some example diagrams to familiarize the subjects with the tasks they will
perform later. This tutorial is helpful to alleviate anxiety and to give all subjects
the same base knowledge necessary to use the representations (as shown by the
high percentage of correct answers, CAP, detailed in Section 4). The tutorial is
useful also to reduce the learning effect.

3. At the end of the tutorial, we give a presentation of the eye tracker used to
collect data and important instructions on the use of the system, e.g., to avoid
head movements while performing the tasks.

4. Then, we install the subject on a fixed dentist chair and we put a travel pillow
around the subject’s neck to make the subjects comfortable while avoiding head
movements.

5. We explain the technical settings of the running of the study: each question is
displayed on the screen at the top-left corner of the screen, a subject must give
the answer aloud at the end of each task. Once a task finished and the answer
given, the subject presses the “Escape” key to go to the next stimulus.

6. Before performing the tasks, the eye-tracker is calibrated. Calibration requires
the subjects to fix one by one nine points on the screen.

7. After calibration, a short text presenting JHotDraw is shown to the subject,
summarizing its intent and main characteristics. This text provides enough
information to perform the tasks.

8. Then, data collection begins while the subjects perform the tasks. No time limit
is set but subjects are requested to answer aloud as soon as possible. We use
a check-list to assess the answers of each task. If all elements of the list are
covered, then the subject’s answer is correct, otherwise the answer is considered
incorrect.

9. Finally, we provide each subject with a short written auto-evaluation question-
naire to evaluate their knowledge of design patterns and JHotDraw. We give
this questionnaire after the experimentation not to reveal the purpose of our
study.

10. At the end of the experiment, we give a symbolic present to the subjects for their
participation. We ask them not to share any information with other potential
subjects until the date of the end of the complete study.

510 Empir Software Eng (2010) 15:493–522

Table 3 Collected data Collected data
Number of subjects (#) 24
Data (Mb) 36
Number of videos (#) 144
Total time of experiments (hours) 18
Total time eye-tracking (min) 112.4
Total number of fixations 21,395

Diagrams of 15 classes

Average time on task Composition(sec) 36
Average time on task Participation(sec) 33
Average time on task Role(sec) 54

Diagrams of 40 classes

Average time on task Composition(sec) 49
Average time on task Participation(sec) 52
Average time on task Role(sec) 58

4 Analysis and Results

We discuss here the results of testing our hypotheses. We use the Student t-Test
after verifying that all the collected data is normal. The Student t-Test is a robust
statistical test that can be used when the sample size is small. It only assumes
random independent samples with normal distributions or distributions close to the
normality.

We explore two factors that could mitigate these results, DP Knowledge and
JHotDraw Knowledge. Table 3 summarizes some statistics of the collected data.
Next sections will show the result of our analyses on the effects of adding the
Representations Dong, Gamma, Schauer, and UML on UML class diagrams for the
tasks Participation, Composition, and Role respectively.

4.1 Data Analysis of Task Participation, 15 Classes

Subjects performed better for the metric of correct answer percentage CAP using
UML than using any of the other three representations. Diagrams using Represen-
tation Dong are effort-consuming with respect to UML: p-values around 0.007 and
less for both the ratio of fixations, ROAF, and the ratio on fixation time, ROAFT,
and differences in CAP and in the average fixation duration AFD showing the
same tendency, see Tables 4 and 5. The mean differences between Dong and UML
shows a difference of 0.25 and 0.29 in ROAF and ROAFT, meaning more effort

Table 4 Means of dependent
variable values for
Representations Dong,
Gamma, Schauer, and UML
on Task Participation,
diagrams with 15 classes

Diagrams Perf. Effort measures

CAP (%) AFD (ms) ROAF (#) ROAFT (ms)

Dong15 50.00 277.61 0.54 0.55
Gamma15 60.00 270.60 0.70 0.74
Schauer15 83.33 273.85 0.84 0.87
UML15 100.00 264.66 0.79 0.84

Empir Software Eng (2010) 15:493–522 511

Table 5 Hypotheses testing for representations Dong, Gamma, Schauer, and UML on Task Partici-
pation, diagrams with 15 classes

Diagrams P-values

AFD (ms) ROAF (#) ROAFT (ms)

H01: Dong15 vs. UML15 0.79 0.290 0.380
H02: Gamma15 vs. UML15 0.90 0.120 0.080
H03: Schauer15 vs. UML15 0.70 0.007 <0.001

with Representation Dong. A difference in AFD of roughly 13ms showing more
effort with Representation Dong. Finally, CAP has a value of 50% with Dong in
comparison to 100% with Representation UML.

Figure 10 shows that subjects working with Representation Dong exhibit clearly
lower values for ROAF and ROAFT and a higher value in AFD. However, subjects
using Representation Dong have a uniform performance, i.e., flat box plots, com-
pared to Gamma, Schauer, and UML. Dong is a representation rich in semantics and
that could explain this little variance observed in the box plots.

We conclude that for Task Participation, the average effort is superior in subjects
using Representation Dong than in subjects using UML. For the other two represen-
tations, we do not report statistically significant differences on the effort. Represen-
tation UML has more correct answers than the other two representations. However,
it is important to mention that Representation Schauer shows similar performances
to UML for this task. Representation Gamma shows a larger variance in subject’s

50

50

83,33

100

0 20 40 60 80 100

D

G

S

U

CAP (%)

D

G

S

U

Representation

Representation
Representation

U10S10G10D10

A
F

D
 (

m
s

)

450,000

400,000

350,000

300,000

250,000

200,000

150,000

p-values:
H01: 0,798
H02: 0,906
H03: 0,700

286,28

261,182 266,310

240,814

U10S10G10D10

R
O

A
F

 (
#)

1,000

,900

,800

,700

,600

,500

,400

p-values:
H01: 0,293
H02: 0,128
H03: 0,0007 ---> H

α3.1 verified

0,549

0,801

0,856

0,742

U10S10G10D10

R
O

A
F

T
 (

m
s)

1,000

,900

,800

,700

,600

,500

,400

p-values:
H01: 0,389
H02: 0,08
H03: <0,0001---> H

α3.1 verified

0,562

0,749

0,874
0,862

Fig. 10 Data distribution for Task Participation, diagrams of 15 classes

512 Empir Software Eng (2010) 15:493–522

Table 6 Means of dependent variable values for representations Dong, Gamma, Schauer, and UML
on Task Composition, diagrams with 15 classes

Diagrams Perf. Effort measures
CAP (%) AFD (ms) ROAF (#) ROAFT (ms)

Dong15 100.00 280.11 0.66 0.73
Gamma15 50.00 279.76 0.65 0.70
Schauer15 100.33 230.84 0.56 0.63
UML15 83.33 245.12 0.42 0.45

effort in AFD, i.e., bigger box plots compared to the other representations, which
could mean an influence of one or both of the mitigating factors on the performance
of subjects for Gamma.

4.2 Data Analysis of Task Composition, 15 Classes Diagram

For Task Composition, most subjects performed well for CAP. The results on the
metrics show that diagrams using Representation Dong are less effort-consuming
than Representation UML (p-values around 0.01 for both ROAF and ROAFT and a
slightly better CAP with respect to UML, see Tables 6 and 7). Even if Representation
Dong requires more to build a mental representation (a mean difference in AFD
superior of 35ms with respect to UML), this difference is not statistically significant.
Moreover, the differences in ROAF (0.24) and ROAFT (0.28) shows less effort with
Representation Dong. Values for CAP are slightly superior with Representation
Dong with respect to Representation UML (100% with Dong versus 83,3% with
UML).

As Representation Dong, Representation Gamma requires less effort from sub-
jects than UML. However, the value of 50% in CAP for Gamma prevent us of
drawing conclusions. If we look at Fig. 11, we can see again a dispersed variance in
the box plots for Gamma, particularly for AFD. This variance leads us to think that
one or both of the mitigating variables could have an influence on the performance
of subjects for this representation. Representation Schauer has performed slightly
better than Representation UML in all our metrics. Despite this fact, we do not
report significant differences between Representations Schauer and UML.

In conclusion, the significance tests presented in Table 7 indicate that diagrams
with Representation Dong require less effort for Task Composition. Having all
pattern-related information inside the class (same space) in Dong, requires less effort

Table 7 Hypotheses testing for representations Dong, Gamma, Schauer, and UML on Task Com-
position, diagrams with 15 classes

Diagrams P-values

AFD (ms) ROAF (#) ROAFT (ms)

H01: Dong15 vs. UML15 0.56 0.02 0.090
H02: Gamma15 vs. UML15 0.42 0.03 0.020
H03: Schauer15 vs. UML15 0.33 0.01 0.008

Empir Software Eng (2010) 15:493–522 513

100

50

100

83,33

0 20 40 60 80 100

D

G

S

U

CAP (%)

D

G

S

U

Representation
U10S10G10D10

A
F

D
 (

m
s

)

450,000

400,000

350,000

300,000

250,000

200,000

150,000

p-values:
H01: 0,5677
H02: 0,425
H03: 0,3328

261,469
268,2

240,22
226,245

Representation

U10S10G10D10

R
O

A
F

 (
#)

1,000

,800

,600

,400

,200

,000

0,658 0,666

0,539

0,458

p-values:
H01: 0,219
H02: 0,033 ---> H

α2.2 verified
H03: 0,015 ---> H

α3.2 verified

Representation

U10S10G10D10

R
O

A
F

T
 (

m
s)

1,000

,800

,600

,400

,200

,000

0,738

p-values:
H01: 0,091
H02: 0,020 ---> H

α2.2 verified
H03: 0,008 ---> H

α3.2 verified

0,717

0,622

0,516

Fig. 11 Data distribution for Task Composition, diagrams of 15 classes

from the subjects compared to the effort of visually searching for pattern related
information in UML.

4.3 Data Analysis of Task Role, 15 Classes Diagram

Subjects using Representation Dong performed better in CAP than using any of
the other three representations. Tables 8 and 9 shows that Representation Dong
requires less effort than Representation UML. The difference of roughly 0.22 in
ROAF and ROAFT show less effort with Dong. Values in CAP show also better
performances with Dong (100% against 50% for UML). Here again, Representation
Dong is slightly more effort-consuming. Values in AFD for Representation Dong
shows a mean difference superior of 54ms with respect to UML. However, this
difference is not statistically significant. We had similar performances between users
using Representations Gamma and UML. Figure 12 shows clearly less effort from

Table 8 Means of dependent
variable values for
Representations Dong,
Gamma, Schauer, and UML
on Task Role, diagrams with
15 classes

Diagrams Perf. Effort measures

CAP (%) AFD (ms) ROAF (#) ROAFT (ms)

Dong15 100 327.06 0.73 0.79
Gamma15 40 268.43 0.54 0.60
Schauer15 0 289.36 0.87 0.87
UML15 50 272.85 0.52 0.58

514 Empir Software Eng (2010) 15:493–522

Table 9 Hypotheses testing
for Representations Dong,
Gamma, Schauer, and UML
on Task Role, diagrams with
15 classes

Diagrams P-values

AFD (ms) ROAF (#) ROAFT (ms)

H01: Dong15 vs. UML15 0.57 0.005 0.004
H02: Gamma15 vs. UML15 0.91 0.570 0.810
H03: Schauer15 vs. UML15 0.14 0.010 0.020

subjects using Representation Schauer when compared to UML. However, we can
see a higher effort with Representation Schauer. Moreover, all subjects gave wrong
or incomplete answers using this representation. Thus, even if we have statistically
significant differences in ROAF and ROAFT when comparing Representation
Schauer to UML, we cannot say that Schauer performs better than UML, due to
poor subject performance in CAP when using Schauer.

For Task Role, we conclude that diagrams using Representation Dong requires
with statistical significance less effort and have better answer performance than
UML. Representation Gamma showed similar effort than Representation UML.
Representation Schauer showed less effort. However, we conjecture that due to the
lack of information in this representation, subjects were giving up faster. Looking at
the poor performance of Representation Schauer, we conjecture that just showing
design patterns with the same structure as described in (Gamma et al. 1998) without
any additional information could be a source of confusion for the subjects to really
understand the intent of the class participating in a pattern.

0 20 40 60 80 100

D

G

S

U

CAP (%)

D

G

S

U

100

40

0

50

Representation

U10S10G10D10

A
F

D
 (

m
s)

450,000

400,000

350,000

300,000

250,000

200,000

150,000

p-values:
H01: 0,574
H02: 0,914
H03: 0,145

329,923

236,121

281,664 286,894

Representation

U10S10G10D10

R
O

A
F

 (
#)

1,000

,900

,800

,700

,600

,500

,400

,300

p-values:
H01: 0,0005 ---> H

α1.2 verified
H02: 0,576
H03: 0,018 ---> H

α3.2 verified

0,764

0,554

0,857

0,525

Representation
U10S10G10D10

R
O

A
F

T
 (

m
s)

1,000

,900

,800

,700

,600

,500

,400

,300

p-values:
H01: 0,004 ---> H

α1.2 verified
H02: 0,817
H03: 0,028 ---> H

α3.2 verified

0,819

0,63

0,884

0,633

Fig. 12 Data distribution for Task Role, diagrams of 15 classes

Empir Software Eng (2010) 15:493–522 515

4.4 Data Analysis of the Impact of Secondary Factors in 15 Classes Diagrams

The results presented in Sections 4.1, 4.2 and 4.3 show:

– For Task Participation: a better performance in CAP for users using Represen-
tation UML over all other representations and also less effort in subjects with
respect to Dong. No statistically significant differences on subjects’ effort were
reported when comparing UML to the other two representations.

– For Task Composition: subjects performed well in most representations for CAP,
despite this fact, only Representation Dong requires less effort when compared
to UML.

– For Task Role: Representation Dong has better values in CAP than the other
three representations and was again the only representation to require less effort
when compared to UML.

Considering the variances in the metrics reported in previous sections, we inves-
tigated if the levels of knowledge in design patterns could mitigate the results. We
eliminated the mitigating variable of JHotDraw Knowledge because more than 80%
of the subjects where classified on the basic level. Therefore, we are sure that this
variable will not have an impact on the presented results.

For simplicity reasons and because none of our subjects had knowledge of design
patterns, we decided to group design patterns knowledge in two categories: 1 for
basic-medium level and 2 for the expert level. We also chose to study only the values
of answers given and ROAF.

Figure 13 (left) shows the impact of design pattern knowledge on Task Compo-
sition. With Representation Gamma, subjects who have very good design pattern
knowledge (level 2) perform better than subjects having basic or average knowledge

RFOA

Fig. 13 Combined impact of answers or design pattern knowledge and the different representations
used, 15 classes diagram

516 Empir Software Eng (2010) 15:493–522

Table 10 Impact of design patterns knowledge, 15 classes diagram

Answers ROAF Answers ROAF Answers ROAF
(C) (C) (P) (P) (R) (R)

DP knowledge 0.02 0.31 0.82 0.21 0.45 0.95
Combined 0.13 0.95 0.98 0.93 0.15 0.06

(level 1). We can see the same tendency for Representation UML. This same
tendency is present for the metric of ROAF for all representations even if is not
statistically significant. A 2-way ANOVA test (see Table 10) shows a statistically
significant impact of design patterns knowledge only on the correctness of the
answers for Task Composition. We can see more ore less the same tendency in
the correctness of responses for the other two tasks even if there is no statistically
significant impact for these two tasks.

For Task Participation, we find two interesting situations. The first situation is
for Representation Schauer in the correctness of answers where novices seems to
perform better than experts. The second is in the values for ROAF where all experts
seem to need more effort than novices when performing the task. These situations
could be caused by a deeper analysis made by the experts. Despite the results
mentioned before, we report no significant impact of combining representation and
design pattern knowledge on subjects’ performance.

4.5 Data Analysis of Diagrams of 40 Classes

For Task Participation as with 15 classes diagrams, we found that the effort with Rep-
resentation Dong is greater than with UML. Representation Schauer shows similar
performances than UML. For tasks Composition and Role, we report no statistically
significant results. Due to readability issues caused by the high class density, we
cannot draw further conclusions. The statistical analysis and the descriptive statistics
for these diagrams are available at http://url.hidden-for-double-blind.review.

5 Threats to Validity

Following (Wohlin et al. 2000), we identified some threats to the validity of our
study and mitigated or accepted them. Some threats are related to the use of human
subjects and some others to the use of the equipment.

5.1 Internal Validity

We identified three possible threats to internal validity of our study: maturation,
instrumentation, and diffusion of the treatments. To mitigate the maturation threat,
we addressed the learning effect by (1) illustrating the representations and the kinds
of tasks to be performed by the subjects during the tutorial and (2) showing the tasks
to subjects in different orders. Showing tasks in different orders avoids favoring the
tasks presented at the end. This random ordering also prevents the fatigue effect that

http://url.hidden-for-double-blind.review

Empir Software Eng (2010) 15:493–522 517

could disadvantage tasks always given at the end. We also mitigated the fatigue effect
with the design of experiment, limiting the subjects’ effort to perform the experiment
to between 12 and 15 minutes.

The instrumentation threat is related to the use of the equipment. Subjects have
to wear a fairly heavy head-band and must minimize head movements to avoid
decalibration. Head movements are unavoidable. People tend to move their heads
while they are concentrating, causing small coordinate offsets. To deal with this
threat, we used a dentist chair and a travel pillow to give support to the subject’s neck
and head. We also analyzed eye-movement movies recorded during the experiment
of each subject to detect any coordinate offset. Coordinates offset can be fixed easily,
only simple drift correction is needed to the data to create a coordinates translation.
We had some cases of coordinates offset and they were fixed with drift correction. We
also identified and accepted one threat to the instrumentation validity, the readability
issues with diagrams of 40 classes.

Finally, to prevent subjects to diffuse any information about the study, we asked
the subjects not to talk about the study with other people before the end of the study.
We are confident that our instructions were followed by the subjects.

5.2 Construct Validity

We addressed four threats to construct validity: mono-operation bias, mono-method
biases, hypothesis guessing, and apprehension.

We accepted the risk of having a mono-operation bias caused by the utilization
of one single system (JHotDraw) in our study. However, regarding the amount of
variables to test, we decided to accept the risk instead of increasing the complexity
of our study.

The mono-method bias is the risk to have a bias in the measures of our exper-
iments as a consequence of using only a single type of measures. We used four
dependent variables, i.e., CAP, ROAF, ROAFT, and AFD, and we cross-checked
each measure against the others in our analyses to draw conclusions.

In order to avoid hypothesis guessing, we did not inform the subjects about the
goal of the study. We just explained them in the tutorial that they had to perform
tasks on different UML class diagrams with different design pattern representations.

To prevent the apprehension threat, we first detailed to the subjects the eye-
tracker operation and we reassured them about the absence of risks related to
infrared emissions directed towards their eyes. Second, subjects were confirmed
about the anonymous nature of their answers and their identity. Finally, we decided
not to set a predefined time to perform the tasks, instead, we just asked subjects to
answer as soon as possible.

5.3 External Validity

Two threats were addressed, interaction of selection and treatment and interaction of
setting and treatment. The issue with the interaction of selection and treatment is to
assure that the subjects in this study are representative of software professionals. This
issue has been discussed in several studies (e.g., by Briand et al. (2005)). In our study,
subjects are graduate students with a good knowledge of UML and the majority of

518 Empir Software Eng (2010) 15:493–522

them has a comparable knowledge of UML software modelling and design patterns
to software professionals.

For the interaction of setting and treatment issue, we considered the size and
complexity of the used diagrams. We chose and reverse-engineered JHotDraw, a
good example of a program that extensively uses design patterns. Diagrams used in
the study contains four different design patterns with a maximum class participation
density of two design patterns. We presented diagrams containing 15 classes, which
enters in the range of recommended number of classes for effective program compre-
hension activities (Ambler 2005). We also presented diagrams containing 40 classes
with the aim of studying the representations on more complex diagrams. We cannot
state that our results will apply for all diagrams and for all design patterns. Specific
replications in industry settings is needed to draw such conclusions.

5.4 Conclusion Validity

Threats to conclusion validity identified and addressed are: violated assumptions of
statistical tests, reliability of measures, random irrelevancies in experimental setting,
and random heterogeneity of subjects. To prevent violating assumptions of statistical
tests, we verified and respected all the assumptions on which the tests used in our
analysis relies.

To address the reliability of measures, we chose well-documented measures and
we took care of calibrating well the eye-tracker for every subject before collecting
data.

Regarding the random irrelevancies in experimental setting, our study was per-
formed in a quiet laboratory without any distraction. We also performed preliminary
tests with some other subjects (not included in our study) to detect any other factor
that could influence the results.

Finally, considering the choice of subjects, our sample is heterogeneous enough
in terms of design pattern knowledge to reflect the target population. Moreover, to
avoid subject knowledge from being mainly related to the results, we use the former
as a mitigation variable and verified that its impact is less important than the use of
different design pattern representations.

6 Conclusion, Discussion, and Future Work

Representing design patterns used in a program ease the understanding of its design
and facilitate program comprehension in general. Indeed, a good understanding of
pattern-related information is needed to develop and maintain programs efficiently.
Currently, a common representation to visualize design patterns is the UML collab-
oration notation. Previous work highlighted limitations in this representation and
proposed alternative representations. However, none of these previous pieces of
work made an empirical study to assess whether their representations facilitate more
the comprehension of programs than the common one.

We conducted an empirical study to evaluate the efficiency of one set of alter-
native representations (pattern enhanced class diagrams (Schauer and Keller 1998),
stereotype enhanced UML diagrams (Dong et al. 2007), and “pattern:role” notation
(Gamma 1996; Vlissides 1998)) compared to the UML collaboration notation.

Empir Software Eng (2010) 15:493–522 519

We designed and performed experiments to collect data to compare subjects’s
performance while performing three basic tasks (class participation, pattern compo-
sition and roles played by class) required for design pattern comprehension using
the different representations overlapped on the same UML class diagrams. We
used the following design patterns: Composite, Prototype, Template Method, State
and Singleton. Design patterns were shown as described in Gamma et al. (1998)
with some slight differences due to language implementation issues. We measured
performance in terms of correct answers and effort that subjects spend to perform
given tasks. We collected effort data using eye trackers on diagrams with small
density (15 classes) and with larger density (40 classes).

The analyses showed that stereotype-enhanced UML diagrams (Dong et al. 2007),
with their semantic richness, are more efficient for Tasks Composition and Role than
the UML collaboration notation for diagrams of 15 classes. The UML collaboration
notation and the pattern-enhanced class diagrams, are more efficient for locating the
classes participating in a design pattern (Task Participation).

Looking at the poor performance of the pattern enhanced class diagrams in Task
Role, we may think that just showing design patterns with the same structure as
described in Gamma et al. (1998) without any additional information is a source
of confusion for the subjects. We also report that 40 class diagrams are difficult
to read and, thus, we cannot draw conclusions on the results from these diagrams.
Therefore, other experiments are required to confirm our findings and generalize for
more design patterns.

Thus, the importance of this empirical study, evaluating the efficiency of rep-
resentations to visualize design patterns in UML diagrams, is three-fold. First,
it provides a framework for comparing current and future notations. We at-
tempted to provide all necessary details to replicate our experiments and–or apply
them on other notations, in particular, all the material is accessible on-line at
http://url.hidden-for-double-blind.review. Second, it shows that notations have ad-
vantages and weaknesses. Therefore, it provides ground to devise new notations that
would further overcome identified limitations while combining the best of current
notations. Third, the results of this empirical study could be use to motivate tool
builders to include different notations for different tasks: for example, tool vendors
could decide to include Dong’s notation to describe patterns while keeping the
UML collaboration notation for other tasks and for locating classes participating in
design patterns. Finally, the results could influence educators in choosing to teach
to their students different notations, emphasizing that none of the existing notation
fits all possible tasks. They could also help them to highlight to their students
the importance of carefully investigating notations, even if backed by industrial
consortium, such as the UML collaboration notation.

In future work, we will replicate the study with other diagrams and using other
design patterns to confirm our observations and to address more threats to the
validity. We will conduct scan-paths studies in pattern comprehension activities to
compare experts and novices trying to find diagram-reading patterns. We will use
the results obtained in this work to propose a new representation and compare its
efficiency executing an empirical study. We will also study dynamic-visualization
techniques in design pattern comprehension as those proposed by Dong et al. (2007)
and Schauer and Keller (1998).

Acknowledgement The authors thank Rocco Olivieto for the fruitful discussions and suggestions.

http://url.hidden-for-double-blind.review

520 Empir Software Eng (2010) 15:493–522

References

Ambler SW (2005) The elements of UML 2.0 style. Cambridge University Press, Cambridge
Aversano L, Canfora G, Cerulo L, Del Grosso C, Di Penta M (2007) An empirical study on the

evolution of design patterns. In: Proceedings of the the 6th European software engineering
conference and symposium on the foundations of software engineering. ACM, New York, pp
385–394

Bednarik R, Tukiainen M (2006) An eye-tracking methodology for characterizing program compre-
hension processes. In: Proceedings of 5th symposium on eye tracking research & applications.
ACM, New York, pp 125–132

Bojko A (2005) Eye tracking in user experience testing: how to make the most of it. In: Proceedings
of the 14th annual conference of the usability professionals association. Usability Professionals’
Association, Bloomingdale

Briand LC, Labiche Y, Di Penta M, Yan-Bondoc H (2005) An experimental investigation of formal-
ity in UML-based development. Trans Soft Eng 31(10):833–849

Chabris CF, Kosslyn SM (2005) Representational correspondence as a basic principle of diagram
design. In: Knowledge and information visualization. Springer, New York, pp 36–57

Dong J, Yang S, Zhang K (2005) Visdp: a web service for visualizing design patterns on demand.
In: Proceedings of the 6th international conference on information technology: coding and
computing.

Dong J, Yang S, Zhang K (2007) Visualizing design patterns in their applications and compositions.
Trans Soft Eng 33(7):433–453

Duchowski AT (2003) Eye tracking methodology: theory and practice. Springer, New York
Eden AH, Yehudai A, Gil J (1997) Precise specification and automatic application of design patterns.

IEEE Computer Society, Piscataway, pp 143–152
Eichelberger H (2003) Nice class diagrams admit good design? In: Proceedings of the 1st symposium

on software visualization. ACM, New York, pp 159–ff
Eichelberger H, von Gudenberg JW (2003) Uml class diagrams—state of the art in layout techniques.

In: Proceedings of the 1st SOFTVIS workshop on visualizing software for understanding and
analysis. ACM, New York, pp 30–34

France RB, Kim D-K, Ghosh S, Song E (2004) A uml-based pattern specification technique. Trans
Soft Eng 30(3):193–206

Gamma E (1996) Applying design patterns in Java. Java Rep 1(6):47–53
Gamma E, Helm R, Johnson R, Vlissides J (1998) Design patterns—elements of reusable object-

oriented software. Addison-Wesley, Reading
Goldberg JH, Kotval XP (1999) Computer interface evaluation using eye movements: methods and

constructs. Int J Ind Ergon 24(6):631–645
Goldberg JH, Stimson MJ, Lewenstein M, Scott N, Wichansky AM (2002) Eye tracking in web

search tasks: design implications. In: Proceedings of the 1st symposium on eye tracking research
& applications. ACM, New York, pp 51–58

Guan Z, Lee S, Cuddihy E, Ramey J (2006) The validity of the stimulated retrospective think-aloud
method as measured by eye tracking. In: Proceedings of the 12th conference on human factors
in computing systems, pp 1253–1262

Guhneuc Y-G (2006) Taupe: towards understanding program comprehension. In: Proceedings of
16th IBM center for advanced studies conference. ACM, New York, pp 1–13

Hutchins E (1995) Distributed cognition. MIT, Cambridge
JHotdraw (2007) JHotdraw: a java GUI framework for technical and structured graphics. http://

www.jhotdraw.org
Kazman R, Klein M, Barbacci M, Longstaff T, Lispon H, Carriere J (1998) The architecture tradeoff

analysis method. In: Proceedings of the 4th international conference on engineering of complex
computer systems. IEEE Computer Society, Piscataway, pp 68–78

Khomh F, Guéhéneuc Y-G (2008) Do design patterns impact software quality positively? In: Pro-
ceedings of the 12th conference on software maintenance and reengineering. IEEE Computer
Society Press, Piscataway

Lauder A, Kent S (1998) Precise visual specification of design patterns. In: Proceedings of the 12th
European conference on object-oriented programming. Springer, New York, pp 114–134

Mapelsden D, Hosking J, Grundy J (2002) Design pattern modelling and instantiation using dpml.
In: Proceedings of the 14th international conference on tools. Australian Computer Society,
Canberra, pp 3–11

http://www.jhotdraw.org
http://www.jhotdraw.org

Empir Software Eng (2010) 15:493–522 521

Moore P, Flitz C (1993) Gestalt theory and instructional design. J Tech Writ Commun 23(2):
137–157

Object Management Group (1997) Unified modeling language specification, version 1.1. http://www.
omg.org

Purchase HC, Carrington DA, Allder J-A (2002) Empirical evaluation of aesthetics-based graph
layout. Empir Soft Eng 7(3):233–255

Rayner K (1998) Eye movements in reading and information processing: 20 years of research.
Psychol Bull 124(3):372–422

Rich C, Waters RC (1988) The programmer’s apprentice. Computer 21(11):10–25
Schauer R, Keller R (1998) Pattern visualization for software comprehension. In: Proceedings of the

6th international workshop on program comprehension. IEEE Computer Society, Piscataway,
pp 4–12

Shalloway A, Trott JR (2002) Design patterns explained: a new perspective on object-oriented
design. Addison-Wesley, Reading

Soloway E, Pinto J, Letovsky S, Littman D, Lampert R (1988) Designing documentation to compen-
sate for delocalized plans. Commununications 31(11):1259–1267

Sun D, Wong K (2005) On evaluating the layout of uml class diagrams for program comprehension.
In: Proceedings of the 13th international workshop on program comprehension. IEEE Computer
Society, Piscataway, pp 317–326

Trese T, Tilley S (2007) Documenting software systems with views V: towards visual documentation
of design patterns as an aid to program understanding. In: Proceedings of the 25th international
conference on design of communication. ACM, New York, pp 103–112

Vlissides J (1998) Notation, notation, notation. C++ Report
von Mayrhauser A, Vans AM (1995) Program comprehension during software maintenance and

evolution. IEEE Comput 28(8):44–55
Ware C (2005) Visual queries: the foundation of visual thinking. Springer, New York
Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2000) Experimentation in

software engineering: an introduction. Kluwer Academic, Dordrecht
Yusuf S, Kagdi H, Maletic JI (2007) Assessing the comprehension of uml class diagrams via eye

tracking. In: Proceedings of the 15th international conference on program comprehension. IEEE
Computer Society, Piscataway, pp 113–122

Gerardo Cepeda Porras holds a M.Sc. in computer science from Université de Montréal, Canada,
since 2008 and an Engineering Diploma from Universidad de las Américas Puebla, Mexico, since
2003. He worked in the Ptidej team on empirical software engineering studies to understand program
comprehension using eye-trackers. He is now software analyst and programmer at Giro Inc., a leader
in software solutions for public transit and postal distribution.

http://www.omg.org
http://www.omg.org

522 Empir Software Eng (2010) 15:493–522

Yann-Gaël Guéhéneuc is associate professor at the Department of computing and software
engineering of Ecole Polytechnique of Montreal where he leads the Ptidej team on evaluating
and enhancing the quality of object-oriented programs by promoting the use of patterns, at the
language-, design-, or architectural-levels. In 2009, he was awarded the NSERC Research Chair
Tier II on Software Patterns and Patterns of Software. He holds a Ph.D. in software engineering
from University of Nantes, France (under Professor Pierre Cointe’s supervision) since 2003 and an
Engineering Diploma from École des Mines of Nantes since 1998. His Ph.D. thesis was funded
by Object Technology International, Inc. (now IBM OTI Labs.), where he worked in 1999 and
2000. His research interests are program understanding and program quality during development
and maintenance, in particular through the use and the identification of recurring patterns. He was
the first to use explanation-based constraint programming in the context of software engineering to
identify occurrences of patterns. He is interested also in empirical software engineering; he uses eye-
trackers to understand and to develop theories about program comprehension. He has published
many papers in international conferences and journals.

	An empirical study on the efficiency of different design pattern representations in UML class diagrams
	Abstract
	Introduction
	Related Work
	Program Comprehension
	Design Pattern Visualization
	Eye-tracking Studies

	Experimental Design
	Representations
	Tasks
	Hypotheses
	Objects
	Independent Variables
	Dependent Variables
	Subjects
	Questions and Stimulus
	Equipment
	Procedure

	Analysis and Results
	Data Analysis of Task Participation, 15 Classes
	Data Analysis of Task Composition, 15 Classes Diagram
	Data Analysis of Task Role, 15 Classes Diagram
	Data Analysis of the Impact of Secondary Factors in 15 Classes Diagrams
	Data Analysis of Diagrams of 40 Classes

	Threats to Validity
	Internal Validity
	Construct Validity
	External Validity
	Conclusion Validity

	Conclusion, Discussion, and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

